Skip to main content

Advertisement

Log in

The Effectively Simultaneous Production of Cello-oligosaccharide and Glucose Mono-decanoate from Lignocellulose by Enzymatic Esterification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cello-oligosaccharide has drawn an increasing attention as the nutritional ingredients of dietary supplements, whose quality is affected by the concentration of monosaccharide. In the present study, an effective process was developed for the simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose by enzymatic esterification. During the process, the excessive glucose in cello-oligosaccharide was converted into glucose mono-decanoate, which is a well-known biodegradable nonionic surfactant. The filter paper was initially used as the model to investigate the feasibility of the process, in which the purity of resultant cello-oligosaccharide was increased from 33.3% to 74.3%, simultaneously producing glucose mono-decanoate with a purity of 92.3%. Further verification of 3 kinds of lignocelluloses (switchgrass, cornstalk, and reed) also indicated a good performance of the process. The present process provided an effective strategy to increase the purity of resultant cello-oligosaccharide with the simultaneous production of high value–added products of sugar monoester.

Simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Whisner, C. M., & Castillo, L. F. (2018). Prebiotics, bone and mineral metabolism. Calcified Tissue International, 102(4), 443–479.

    PubMed  CAS  Google Scholar 

  2. Voon, L. K., Pang, S. C., & Chin, S. F. (2016). Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydrate Polymers, 142, 31–37.

    PubMed  CAS  Google Scholar 

  3. Mano, M. C. R., Neri Numa, I. A., da Silva, J. B., Paulino, B. N., Pessoa, M. G., & Pastore, G. M. (2017). Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Applied Microbiology Biotechnology, 102, 17–37.

    PubMed  Google Scholar 

  4. Kothari, D., Patel, S., & Goyal, A. (2014). Therapeutic spectrum of nondigestible oligosaccharides: overview of current state and prospect. Journal of Food Science, 79(8), R1491–R1498.

    PubMed  CAS  Google Scholar 

  5. Pang, C. S., Lin, L., & Li, J. Z. (2010). Production of cello-oligosaccharide from hydrolysis of cellulose in the reaction system of HCOOH/HCl. Research Progress In Paper Industry And Biorefinery, 1-3, 1393–1397.

    Google Scholar 

  6. Tolonen, L. K., Juvonen, M., Niemelä, K., Mikkelson, A., Tenkanen, M., & Sixta, H. (2015). Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose. Carbohydrate Research, 401, 16–23.

    PubMed  CAS  Google Scholar 

  7. Chu, Q. L., Li, X., Xu, Y., Wang, Z. Z., Huang, J., Yu, S. Y., & Yong, Q. (2014). Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture. Process Biochemistry, 49(8), 1217–1222.

    CAS  Google Scholar 

  8. Biotechnology, L. R. L. J. and Bioengineering. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. 88, 797-824.

  9. Levinson, H. S. J. J. o. B. (1950) Biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. 59, 485-497.

  10. Im, H. J., Kim, C. Y., & Yoon, K. Y. (2016). Production and characteristics of cello- and xylo-oligosaccharides by enzymatic hydrolysis of buckwheat hulls. Korean Journal of Food Science Technology, 48(3), 201–207.

    Google Scholar 

  11. Kothari, D., Rwivoo, B., & Arun, G. (2012). Immobilization of glucansucrase for the production of gluco-oligosaccharides from leuconostoc mesenteroides. Biotechnology letters, 34(11), 2101–2106.

    PubMed  CAS  Google Scholar 

  12. Ding, Z. Y., & Cao, X. J. (2013). Affinity precipitation of cellulase using ph-response polymer with Cibacron Blue F3GA. Separation and Purification Technology, 102, 136–141.

    CAS  Google Scholar 

  13. Zhang, Q., & Lu, K. J. (2011). Rhamnolipids as affinity foaming agent for selective collection of β-glucosidase from cellulase enzyme mixture. Enzyme & Microbial Technology, 48(2), 175–180.

    CAS  Google Scholar 

  14. Clemens, R. A., Jones, J. M., Kern, M., Lee, S. Y., Mayhew, E. J., Slavin, J. L., & Zivanovic, S. (2016). Functionality of sugars in foods and health: functionality of sugars. Comprehensive Reviews in Food Science Food Safety, 15(3), 433–470.

    CAS  Google Scholar 

  15. Nobre, C., Suvarov, P., & De Weireld, G. (2014). Evaluation of commercial resins for fructo-oligosaccharide separation. New Biotechnology, 31(1), 55–63.

    PubMed  CAS  Google Scholar 

  16. Kamada, T., Nakajima, M., Nabetani, H., Saglam, N., & Iwamoto, S. (2002). Availability of membrane technology for purifying and concentrating oligosaccharides. European Food Research Technology, 214(5), 435–440.

    CAS  Google Scholar 

  17. Polloni, A. E., Chiaradia, V., Figura, E. M., De Paoli, J. O. P., de Oliveira, D., de Oliveira, J. V., de Araujo, P. H. H., & Sayer, C. (2018). Polyesters from macrolactones using commercial lipase NS 88011 and Novozym 435 as biocatalysts. Applied Biochemistry Biotechnology, 184(2), 659–672.

    PubMed  CAS  Google Scholar 

  18. Ku, M. A., & Hang, Y. D. (1995). Enzymatic synthesis of esters in organic medium with lipase from Byssochlamys fulva. Biotechnology letters, 17(10), 1081–1084.

    CAS  Google Scholar 

  19. Degn, P., & Zimmermann, W. (2001). Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnology and Bioengineering, 74(6), 483–491.

    PubMed  CAS  Google Scholar 

  20. Foley, P., Kermanshahi Pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chemical Society Reviews, 41(4), 1499–1518.

    PubMed  CAS  Google Scholar 

  21. Momoko, K., Kana, I., Yuya, H., Yoshiro, T., Noriho, K., & Masahiro, G. (2013). Sucrose laurate-enhanced transcutaneous immunization with a solid-in-oil nanodispersion. MedChemComm, 5, 20–24.

    Google Scholar 

  22. Ke, L. Y., Zhang, S. F., & Zong, Y. J. (2002). Analysis of sucrose esters by thin-layer chromatography. Chinese Journal of Chromatography, 20, 476.

    Google Scholar 

  23. Zhang, X., Nie, K. L., Wang, M., Liu, L., Li, K. F., Wang, F., Tan, T., & Deng, L. (2013). Site-specific xylitol dicaprate ester synthesized by lipase from Candida sp. 99-125 with solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 89, 61–66.

    CAS  Google Scholar 

  24. Li, L., Ji, F. L., Wang, J. Y., Li, Y. C., & Bao, Y. M. (2015). Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents. Enzyme Microbial Technology, 69, 46–53.

    PubMed  CAS  Google Scholar 

  25. Liu, H., Zhao, S. J., Jin, Y. H., Yue, X. M., Deng, L., Wang, F., & Tan, T. W. (2017). Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on Loofah fiber in a stirred-tank reactor. Bioresource Technology, 244(Pt 1), 929–933.

    PubMed  CAS  Google Scholar 

  26. Abbasi, S., Zandi, P., & Mirbagheri, E. (2005). Quantitation of limonin in Iranian orange juice concentrates using high-performance liquid chromatography and spectrophotometric methods. European Food Research Technology, 221(1-2), 202–207.

    CAS  Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. J. L. A. P. (2008) Determination of structural carbohydrates and lignin in biomass. 1617, 1-16.

  28. Maepa, C. E., Jayaramudu, J., Okonkwo, J. O., Ray, S. S., Sadiku, E. R., & Ramontja, J. (2015). Extraction and characterization of natural cellulose fibers from maize tassel. International Journal of Polymer Analysis Characterization, 20(2), 99–109.

    CAS  Google Scholar 

  29. Carvalho, A. F. A., Neto, P. d. O., da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.

    CAS  Google Scholar 

  30. Olofsson, K., Bertilsson, M., & Lidén, G. (2008). A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1(1), 7.

    PubMed  PubMed Central  Google Scholar 

  31. Farinas, C. S., Loyo, M. M., Junior, A. B., Tardioli, P. W., Neto, V. B., & Couri, S. (2010). Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnology, 27(6), 810–815.

    PubMed  CAS  Google Scholar 

  32. Zhang, Y. H. P., & Lee, R. L. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.

    PubMed  CAS  Google Scholar 

  33. Kang, O. L., Ghani, M., Hassan, O., Rahmati, S., & Ramli, N. (2014). Novel agaro-oligosaccharide production through enzymatic hydrolysis: physicochemical properties and antioxidant activities. Food Hydrocolloids, 42, 304–308.

    CAS  Google Scholar 

  34. Xu, Q., Chao, Y. L., & Wan, Q. B. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77, 435–441.

    CAS  Google Scholar 

  35. Agheli, N., Kabir, M., Berni-Canani, S., Petitjean, E., Boussairi, A., Luo, J., Bornet, F., Slama, G. and Rizkalla, S. W. J. T. J. O. N. (1998) Plasma lipids and fatty acid synthase activity are regulated by short-chain fructo-oligosaccharides in sucrose-fed insulin-resistant rats. 128, 1283-1288.

  36. Mussatto, S. I., & Ismael, M. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 68(3), 587–597.

    CAS  Google Scholar 

  37. Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41(9), 1913–1923.

  38. Al Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., & Hassan, F. A. (2013). Prebiotics as functional foods: a review. Journal of Functional Foods, 5(4), 1542–1553.

    Google Scholar 

  39. Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Anatomy of lipase binding sites: the scissile fatty acid binding site. Chemistry Physics of Lipids, 93(1-2), 67–80.

    PubMed  CAS  Google Scholar 

  40. Zhang, X., Nie, K. L., Zheng, Y. L., Wang, F., Deng, L., & Tan, T. W. (2015). Enzymatic production and functional characterization of D-sorbitol monoesters with various fatty acids. Catalysis Communications, 72, 138–141.

    CAS  Google Scholar 

  41. Hong, S. Y., & Yoo, Y. J. (2013). Activity enhancement of Candida antarctica lipase B by flexibility modulation in helix region surrounding Rhe active site. Applied Biochemistry Biotechnology, 170(4), 925–933.

    PubMed  CAS  Google Scholar 

  42. Galgali, A., Gawas, S. D., & Rathod, V. K. (2017). Ultrasound assisted synthesis of citronellol laurate by using Novozym 435. Catalysis Today, 309, 133–139.

    Google Scholar 

  43. Gumel, A. M., Annuar, M. S. M., Heidelberg, T., & Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry, 46(11), 2079–2090.

    CAS  Google Scholar 

  44. Chang, S. W., & Shaw, J. F. (2009). Biocatalysis for the production of carbohydrate esters. New Biotechnology, 26(3-4), 109–116.

    PubMed  CAS  Google Scholar 

  45. Lu, Y. Y., Yan, R., Ma, X., & Wang, Y. (2013). Synthesis and characterization of raffinose fatty acid monoesters under; ultrasonic irradiation. European Food Research Technology, 237(2), 237–244.

    CAS  Google Scholar 

  46. Waghmare, G. V., & Rathod, V. K. (2016). Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrasonics Sonochemistry, 32, 60–67.

    PubMed  CAS  Google Scholar 

  47. Yan, Y. C., Bornscheuer, U. T., Stadler, G., Lutz-Wahl, S., Reuss, M., & Schmid, R. D. (2001). Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: optimization of parameters by response surface methodology. Journal of The American Oil Chemists' Society, 78(2), 147–153.

    CAS  Google Scholar 

  48. Sinisterra, J. V. (1992). Application of ultrasound to biotechnology: an overview. Ultrasonics Sonochemistry, 30(3), 180–185.

    CAS  Google Scholar 

  49. Nobre, C., Teixeira, J. A., & Rodrigues, L. R. (2012). Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column. New biotechnology, 29(3), 395–401.

    PubMed  CAS  Google Scholar 

  50. Zhang, X., Wei, W., Cao, X., & Feng, F. (2015). Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters. Journal of the Science of Food Agriculture, 95(8), 1631–1637.

    PubMed  CAS  Google Scholar 

  51. Wi, S. G., Cho, E. J., Lee, D. S., Lee, S. J., Lee, Y. J., & Bae, H. J. (2015). Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnology for Biofuels, 8(1), 228.

    PubMed  PubMed Central  Google Scholar 

  52. Kou, L. F., Song, Y. L., Zhang, X., & Tan, T. W. (2017). Comparison of four types of energy grasses as lignocellulosic feedstock for the production of bio-ethanol. Bioresource Technology, 241, 424–429.

    PubMed  CAS  Google Scholar 

  53. Arabhosseini, A., Huisman, W., & Müller, J. (2010). Modeling of the equilibrium moisture content (EMC) of Miscanthus (Miscanthus× giganteus). Biomass Bioenergy, 34(4), 411–416.

    Google Scholar 

  54. Karunanithy, C., Muthukumarappan, K., & Donepudi, A. (2013). Moisture sorption characteristics of switchgrass and prairie cord grass. Fuel, 103, 171–178.

    CAS  Google Scholar 

  55. Zhao, Y., Lu, W. J., & Wang, H. T. (2009). Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal, 150(2-3), 411–417.

    CAS  Google Scholar 

  56. Debora, N., Anna, E., & Daniel, M. (2007). Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydrate Polymers, 63, 20–28.

    Google Scholar 

  57. Hu, K., Liu, Q., Wang, S. C., & Ding, K. (2009). New oligosaccharides prepared by acid hydrolysis of the polysaccharides from Nerium indicum Mill and their anti-angiogenesis activities. Carbohydrate Research, 344(2), 198–203.

    PubMed  CAS  Google Scholar 

Download references

Funding

This study received financial support from the National Key Research and Development Program of China (2016YFD400601), the National Natural Science Foundation of China (21978020, 21978017, 21978019), and the Amoy Industrial Biotechnology R&D and Pilot Conversion Platform (3502Z20121009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Nie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Simultaneous production and separation of cello-oligosaccharide was developed.

• The excessive glucose in oligosaccharide was converted into sugar ester.

• The method provided an effective way to increase the purity of oligosaccharide.

• Validation with biomass as substrates indicated a good performance of the process.

Electronic supplementary material

ESM 1

(DOCX 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Liu, C., Wang, W. et al. The Effectively Simultaneous Production of Cello-oligosaccharide and Glucose Mono-decanoate from Lignocellulose by Enzymatic Esterification. Appl Biochem Biotechnol 192, 600–615 (2020). https://doi.org/10.1007/s12010-020-03356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03356-0

Keywords

Navigation