Skip to main content
Log in

Comparative transcriptome analysis of MeJA-responsive AP2/ERF transcription factors involved in notoginsenosides biosynthesis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Differential transcriptome analysis is an effective method for gene selection of triterpene saponin biosynthetic pathways. MeJA-induced differential transcriptome of Panax notoginseng has not been analyzed yet. In this study, comparative transcriptome analysis of P. notoginseng roots and methyl jasmonate (MeJA)-induced roots revealed 83,532 assembled unigenes and 21,947 differentially expressed unigenes. Sixteen AP2/ERF transcription factors, which were significantly induced by MeJA treatment in the root of P. notoginseng, were selected for further analysis. Real-time quantitative PCR (RT-qPCR) and co-expression network analysis of the 16 AP2/ERF transcription factors showed that PnERF2 and PnERF3 had significant correlation with dammarenediol II synthase gene (DS) and squalene epoxidase gene (SE), which are key genes in notoginsenoside biosynthesis, in different tissues and MeJA-induced roots. A phylogenetic tree was conducted to analyze the 16 candidate AP2/ERF transcription factors and other 38 transcription factors. The phylogenetic tree analysis showed PnERF2, AtERF3, AtERF7, TcERF12 and other seven transcriptional factors are in same branch, while PnERF3 had close evolutionary relationships with AtDREB1A, GhERF38 and TcAP2. The results of comparative transcriptomes and AP2/ERF transcriptional factors analysis laid a solid foundation for further investigations of disease resistance and notoginsenoside biosynthesis in P. notoginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Huang Z, Ge F, Liu D, Lu R, Chen C (2017) An AP2/ERF family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng. J Plant Growth Regul 36(3):691–701

    Article  CAS  Google Scholar 

  • Du CF, Hu KN, Xian SS, Liu CQ, Fan JC, Tu JX, Fu T (2016) Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genom 291:1–15

    Article  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu XC, Chen JF, Xiao Y et al (2012) Overexpression of allene oxide cyclase promoted tanshinone phenolic acid production in Salvia miltiorrhiza. Plant Cell Rep 31:2247–2259

    Article  CAS  PubMed  Google Scholar 

  • He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S (2016) Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44(W1):W236–W241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Jin L, Liu JY (2008) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol 165(2):214–223

    Article  CAS  PubMed  Google Scholar 

  • Jovanovski E, Jenkins A, Dias AG et al (2010) Effects of Korean red ginseng (Panax ginseng CA Mayer) and its isolated ginsenosides and polysaccharides on arterial stiffness in healthy individuals. Am J Hypertens 23:469–472

    Article  CAS  PubMed  Google Scholar 

  • Karmazyn M, Gan XT (2017) Treatment of the cardiac hypertrophic response and heart failure with ginseng, ginsenosides, and ginseng-related products. Can J Physiol Pharmacol 95(10):1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zhang DB, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33:717–735

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung KW, Wong AST (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu MH, Yang BR, Cheung WF et al (2015) Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genom 16:265

    Article  Google Scholar 

  • Liu H, Pan J, Yang Y, Cui X, Qu Y (2018) Production of minor ginenosides from Panax notoginseng by microwave processing method and evaluation of their blood-enriching and hemostatic activity. Molecules 23(6):1243

    Article  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the –ΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Jiang WM, Zhang L et al (2013a) AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PLoS ONE 8:e57657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Zhang L, Zhang F et al (2013b) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Sun C, Sun Y et al (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genom 12(Suppl 5):S5

    Article  CAS  Google Scholar 

  • Ma L, Hu L, Fan J, Amombo E, Khaldun ABM, Zheng Y, Chen L (2017) Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 26(6):841–854

    Article  CAS  PubMed  Google Scholar 

  • Mayer K, Schüller C, Wambutt R et al (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402(6763):769

    Article  CAS  PubMed  Google Scholar 

  • Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS ONE 7(4):e35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Article  Google Scholar 

  • Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R (2012) Ginsenosides as anticancer agents: in vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Front Pharmacol 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Luo H, Sun C, Yang TJ, Dong LL, Huang LF, Chen S (2014) Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 533:295–303

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Fang H, Yu X et al (2018) Transcriptome analysis of JA signal transduction, transcription factors, and monoterpene biosynthesis pathway in response to methyl jasmonate elicitation in Mentha canadensis L. Int J Mol Sci 19(8):2364

    Article  PubMed Central  Google Scholar 

  • Qiao YJ, Shang JH, Wang D, Zhu H, Yang CR, Zhang YJ (2018) Research of Panax spp. in Kunming Institute of Botany, CAS. Nat Prod Bioprospect 8(4):245–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang PC, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theologis A, Ecker JR, Palm CJ et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408(6814):816

    Article  PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Wang CZ, McEntee E, Wicks S, Wu JA, Yuan CS (2006) Phytochemical and analytical studies of Panax notoginseng (Burk.) FH Chen. J Nat Med 60:97–106

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Wang WQ, Wang Y, Yang JZ, Cui XM (2010) Influence of Panax notoginseng continuous cropping on seed germination and seedling growth of the plant. Chin J Ecol 29:1493–1497

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Beijing Genomics Institute at Shenzhen for its assistance in original data processing and related bioinformatics analysis. This work was supported by the National Key R&D Program of China (2019YFC1711000), National Natural Science Foundation of China (Grant no. 81973414), Fundamental Research Funds for the Central Universities (2632019ZD15), "Double First-Class" University project (CPU2018GY09), Natural Science Foundation of Jiangsu Province (Grant no. BK20140663 and BK20191319) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0650).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PL and XL; investigation: TL, JD and XZ; project administration PZ; writing—original draft preparation, TL; writing—review and editing, XL.

Corresponding authors

Correspondence to Ping Li or Xu Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 7632 kb)

Supplementary file2 (DOCX 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Du, J., Zheng, X. et al. Comparative transcriptome analysis of MeJA-responsive AP2/ERF transcription factors involved in notoginsenosides biosynthesis . 3 Biotech 10, 290 (2020). https://doi.org/10.1007/s13205-020-02246-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02246-w

Keywords

Navigation