Synlett 2020; 31(13): 1231-1236
DOI: 10.1055/s-0040-1707858
synpacts
© Georg Thieme Verlag Stuttgart · New York

New Organic Dyes from Phthalonitrile via Interesting Nucleophilic Reactions

Wei Zheng
,
Cheng-Hui Li
Funding was provided by the National Natural Science Foundation of China (Grant Nos. 21631006, 21771100 and 21601060) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20170016).
Further Information

Publication History

Received: 21 April 2020

Accepted after revision: 07 May 2020

Publication Date:
03 June 2020 (online)


Abstract

Phthalonitrile (PN) is regarded mostly as an important precursor for phthalocyanine (Pc). However, the presence of two ortho triple bonds also endow PN with significant potential to form novel conjugated systems. Based on several unexpected nucleophilic reactions, our group has discovered novel applications of PN for the synthesis of asymmetric benzo-fused aza-BOIDPYs and new fused-ring phthalorubines (Pr). This Synpacts highlights our recent advances in this field.

1 Introduction

2 Benzo-Fused Aza-BODIPYs

3 Phthalorubines

4 Conclusion

 
  • References

    • 1a Ding Y, Zhu WH, Xie Y. Chem. Rev. 2017; 117: 2203
    • 1b Ethirajan M, Chen Y, Joshi P, Pandey RK. Chem. Soc. Rev. 2011; 40: 340
    • 1c Wu F, Liu J, Mishra P, Komeda T, Mack J, Chang Y, Kobayashi N, Shen Z. Nat. Commun. 2015; 6: 7547
    • 1d Komeda T, Isshiki H, Liu J, Zhang YF, Lorente N, Katoh K, Breedlove BK, Yamashita M. Nat. Commun. 2011; 2: 217
    • 2a Calvete M, Yang GY, Hanack M. Synth. Met. 2004; 141: 23
    • 2b Zheng W, Wang BB, Lai JC, Wan CZ, Lu XR, Li CH, You XZ. J. Mater. Chem. C. 2015; 3: 3072
    • 2c Liu W, Pan H, Wang Z, Wang K, Qi D. Chem. Commun. 2017; 53: 93765
    • 2d Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, Liu XY, Xu ZX, Fang GJ. Nano Energy 2017; 31: 322
    • 3a Nyokong T. Coord. Chem. Rev. 2007; 251: 1707
    • 3b Furuyama T, Satoh K, Kushiya T, Kobayashi N. J. Am. Chem. Soc. 2014; 136: 765
    • 4a Denekamp IM, Veenstra FL. P, Jungbacker P, Rothenberg G. Appl. Organomet. Chem. 2019; 33: e4872
    • 4b Chow SY. S, Ng DK. P. Org. Lett. 2016; 18: 3234
    • 5a Agirtas MS, Altindal A, Salih B, Saydam S, Bekaroglu O. Dalton Trans. 2011; 40: 3315
    • 5b Wohrle D. Macromol. Rapid Commun. 2001; 22: 68
    • 6a Claessens CG, Rodriguez DG, Rodriguez MS, Medina A, Torres T. Chem. Rev. 2014; 114: 2192
    • 6b Duan C, Iglesias MG, Colberts FJ. M, Wienk MM, Janssen RA. J, Torres T. Angew. Chem. Int. Ed. 2017; 56: 148
    • 7a Bloor JE, Schlabitz J, Walden CC, Demerdache A. Can. J. Chem. 1964; 42: 2201
    • 7b Marks TJ, Stojakovic DR. J. Chem. Soc., Chem. Commun. 1975; 28
    • 7c Day VW, Marks TJ, Wachter WA. J. Am. Chem. Soc. 1975; 97: 4519
    • 7d Furuyama T, Ogura Y, Yoza K, Kobayashi N. Angew. Chem. Int. Ed. 2012; 51: 11110
    • 8a Sripothongnak S, Pischera AM, Espe MP, Durfee WS, Ziegler CJ. Inorg. Chem. 2009; 48: 1293
    • 8b Toriumi N, Muranaka A, Hirano K, Yoshida K, Hashizume D, Uchiyama M. Angew. Chem. Int. Ed. 2014; 53: 7814
    • 8c Toriumi N, Muranaka A, Hashizume D, Uchiyama M. Tetrahedron Lett. 2017; 58: 2267
  • 9 Donyagina VF, Shimizu S, Kobayashi N, Lukyanets EA. Tetrahedron Lett. 2008; 49: 6152
  • 10 Lu H, Mack J, Yang Y, Shen Z. Chem. Soc. Rev. 2014; 43: 4778
  • 11 Lu H, Shimizu S, Mack J, Shen Z, Kobayashi N. Chem. Asian J. 2011; 6: 1026
  • 12 Zheng W, Wang BB, Li CH, Zhang JX, Wan CZ, Huang JH, Liu J, Shen Z, You XZ. Angew. Chem. Int. Ed. 2015; 54: 9070
    • 13a Ruane PH, Mani Bushan K, Pavlos CM, Raechelle AD, Toscano JP. J. Am. Chem. Soc. 2002; 124: 9806
    • 13b Sienkiewicz M, Lazny R. J. Comb. Chem. 2010; 12: 5
  • 14 Zheng W, Zhao Y, Zhuang WH, Wu JJ, Wang FZ, Li CH, Zuo JL. Angew. Chem. Int. Ed. 2018; 57: 15384
    • 15a Baeten M, Bert UW. Adv. Synth. Catal. 2016; 358: 826
    • 15b Yang S, Yun H. Eur. J. Med. Chem. 2013; 63: 558