Skip to main content
Log in

Compact Patch Antenna Array for 60 GHz Millimeter-Wave Broadband Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, a wide-band compact patch antenna array is developed for 60 GHz band applications. The antenna array consists of eight identical elements. Each element is a simple microstrip-fed rectangular radiating patch printed on the top side of a Rogers 5880 substrate. A rectangular ground plane is printed on the bottom side. To adjust the impedance matching for broadband operation, a complete circular-shaped slot and a part of circular-shaped slot are etched off the ground plane and the patch, respectively. A technique to feed the array elements unequally is employed for design a more compact antenna structure with improved gain and impedance bandwidth. An electromagnetic band-gap (EBG) reflector below the array structure is employed to decrease backward radiation and improve front-to-back (F/B) radiation ratio. The antenna array with the EBG reflector has a compact size with overall dimensions of 17.5 × 22 × 1.262 mm3. It achieves operation bandwidth from 56.5 to 65.2 GHz (|S11| ≤ − 10 dB), which covers the 60 GHz unlicensed band (57–64 GHz). The gain variation is from 12 to 16 dBi over the entire operating band. These features make the proposed antenna array system a suitable candidate for industrial, scientific and medical (ISM) broadband applications at 60 GHz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Smulders, P. (2002). Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Communications Magazine, 40(1), 140–147.

    Article  Google Scholar 

  2. Singh, H., Prasad, R., & Bonev, B. (2018). The studies of millimeter waves at 60 GHz in outdoor environments for IMT applications: A state of art. Wireless Personal Communications, 100, 463–474.

    Article  Google Scholar 

  3. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  4. Elboushi, A., Haraz, O. M., Sebak, A., & Denidni, T. (2010). A new circularly polarized high gain DRA millimeter-wave antenna. In Proceedings of the IEEE antennas propagation society international symposium (APS-URSI) (pp. 1–4).

  5. Al-Hasan, M. J., Denidni, T. A., & Sebak, A. R. (2013). Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 61(8), 4354–4357.

    Article  Google Scholar 

  6. Sun, M., Chen, Z. N., & Qing, X. (2013). Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial. IEEE Transactions on Antennas and Propagation, 61(4), 1741–1746.

    Article  Google Scholar 

  7. Dadgarpour, A., Zarghooni, B., & Denidni, T. A. (2014). High-gain planar Bow-tie antenna using zero index metamaterial. In Proceedings of the IEEE antennas and propagation society international symposium (APS-URSI) (pp. 533–534).

  8. Chen, Y.-J., Lin, K. H., Su, H.-L., Lin, H.-H., & Pu, T.-C. (2014). A high-gain directive superstrate antenna for 60-GHz applications. In Proceedings to the IEEE antennas and propagation society international symposium (APS-URSI) (pp. 339–340).

  9. Vettikalladi, H., Lafond, O., & Himdi, M. (2009). High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antennas and Wireless Propagation Letters, 8, 1422–1425.

    Article  Google Scholar 

  10. Chin, K.-S., Jiang, W., Che, W., Chang, C.-C., & Jin, H. (2014). Wideband LTCC 60-GHz antenna array with a dual-resonant slot and patch structure. IEEE Transactions on Antennas and Propagation, 62(1), 174–182.

    Article  Google Scholar 

  11. Lamminen, A. E. I., Saily, J., & Vimpari, A. R. (2008). 60-GHz patch antennas and arrays on LTCC with embedded-cavity substrate. IEEE Transactions on Antennas and Propagation, 56(9), 2865–2874.

    Article  Google Scholar 

  12. Su, R., Gao, P., Wang, R., & Wang, P. (2018). High-gain broadside dipole planar AMC antenna for 60 GHz applications. Electronics Letters, 54(7), 407–408.

    Article  Google Scholar 

  13. Cheng, C.-Y., Chen, J.-P., Su, H.-L., & Lin, K.-H. (2017). A wide-band square slot antenna array with superstrate and electromagnetic band-gap reflector for 60 GHz applications. IEEE Transactions on Antennas and Propagation, 65(9), 4618–4625.

    Article  Google Scholar 

  14. Yang, W., Ma, K., Yeo, K. S., & Lim, W. M. (2015). A compact high-performance patch antenna array for 60-GHz applications. IEEE Antennas and Wireless Propagation Letters, 15, 313–316.

    Article  Google Scholar 

  15. Rabbani, M. S., & Ghafouri-Shiraz, H. (2017). High gain microstrip antenna array for 60 GHz band point to point WLAN/WPAN communications. Microwave and Optical Technology Letters, 59(3), 511–514.

    Article  Google Scholar 

  16. Pourahmadazar, J., & Denidni, T. A. (2017). 60 GHz antenna array for millimeter-wave wireless sensor devices using silver nanoparticles ink mounted on a flexible polymer substrate. Microwave and Optical Technology Letters, 59, 2830–2835.

    Article  Google Scholar 

  17. Li, M., & Luk, K.-M. (2014). Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Transactions on Antennas and Propagation, 62(6), 3012–3018.

    Article  Google Scholar 

  18. Rabbani, M. S., & Ghafouri-Shiraz, H. (2017). Ultra-wide patch antenna array design at 60 GHz band for remote vital sign monitoring with doppler radar principle. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 548–566.

    Article  Google Scholar 

  19. Lamminen, A. E. I., Vimpari, A. R., & Säily, J. (2009). UC-EBG on LTCC for 60-GHz frequency band antenna applications. IEEE Transactions on Antennas and Propagation, 57(10), 2904–2911.

    Article  Google Scholar 

  20. Wang, L., Guo, Y.-X., & Sheng, W.-X. (2013). Wideband high-gain 60-GHz LTCC L-Probe patch antenna array with a soft surface. IEEE Transactions on Antennas and Propagation, 61(4), 1802–1809.

    Article  Google Scholar 

  21. Yeap, S. B., Chen, Z. N., & Qing, X. (2011). Gain-enhanced 60-GHz LTCC antenna array with open air cavities. IEEE Transactions on Antennas and Propagation, 59(9), 3470–3473.

    Article  Google Scholar 

  22. Liu, W., Chen, Z. N., & Qing, X. (2014). 60-GHz thin broadband high-gain LTCC metamaterial-mushroom antenna array”. IEEE Transactions on Antennas and Propagation, 62(9), 4592–4601.

    Article  Google Scholar 

  23. Balanis, C. A. (2016). Antenna theory analysis and design (4th ed.). London: Wiley.

    Google Scholar 

  24. CST Microwave Studio, Computer Simulation Technology, Version 2014.0.0.

  25. Technical Data sheet, 1.85 mm End Launch Connector (67 GHz, 1892-04A-6), Southwest Microwave, Inc. http://mpd.southwestmicrowave.com/products/produc.php?need=endLaunch&item=54. Accessed 20 December 2018.

  26. High-Frequency Structure Simulator (HFSS), ANSYS Corp., Canonsburg, PA, USA, Version 14.0.0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Ayd R. Saad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghattas, A.S.W., Saad, A.A.R. & Khaled, E.E.M. Compact Patch Antenna Array for 60 GHz Millimeter-Wave Broadband Applications. Wireless Pers Commun 114, 2821–2839 (2020). https://doi.org/10.1007/s11277-020-07505-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07505-w

Keywords

Navigation