Skip to main content
Log in

Fuzzy local intensity clustering (FLIC) model for automatic medical image segmentation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Intensity inhomogeneity is one of the main challenges in automatic medical image segmentation. In this paper, fuzzy local intensity clustering (FLIC), which is based on the combination of level set algorithm and fuzzy clustering, is proposed to mitigate the effect of intensity variation and noise contamination. For the FLIC method, the segmentation and bias modification are carried out in a fully automatic and simultaneous manner through the local clustering of intensity and selection of the initial contour by the fuzzy method. Besides, the local entropy is integrated into the FLIC function to improve the contour evolution. Experimental results on inhomogeneous medical images indicate the superiority of the FLIC model over the other state-of-the-art segmentation methods in terms of accuracy, robustness, and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yang, Y., Jia, W., Wu, B.: Simultaneous segmentation and correction model for color medical and natural images with intensity inhomogeneity. Vis. Comput. 36, 1–15 (2019)

    Google Scholar 

  2. Zhou, X., Wang, Y., Zhu, Q., Xiao, C., Lu, X.: SSG: superpixel segmentation and grabcut-based salient object segmentation. Vis. Comput. 35(3), 385–398 (2019)

    Google Scholar 

  3. Song, Y., Peng, G.: Fast two-stage segmentation model for images with intensity inhomogeneity. Vis. Comput. 36, 1–14 (2019)

    Google Scholar 

  4. Javaran, T.A., Hassanpour, H., Abolghasemi, V.: Automatic estimation and segmentation of partial blur in natural images. Vis. Comput. 33(2), 151–161 (2017)

    Google Scholar 

  5. George, M.M., Kalaivani, S., Sudhakar, M.: A non-iterative multi-scale approach for intensity inhomogeneity correction in MRI. Magn. Reson. Imaging 42, 43–59 (2017)

    Google Scholar 

  6. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  8. Xiao, C., Gan, J., Hu, X.: Fast level set image and video segmentation using new evolution indicator operators. Vis. Comput. 29(1), 27–39 (2013)

    Google Scholar 

  9. Bini, A., Bhat, M.: A nonlinear level set model for image deblurring and denoising. Vis. Comput. 30(3), 311–325 (2014)

    Google Scholar 

  10. Min, H., Jia, W., Wang, X.-F., Zhao, Y., Luo, Y.-T.: A polynomial piecewise constant approximation method based on dual constraint relaxation for segmenting images with intensity inhomogeneity. Pattern Recogn. 73, 15–32 (2018)

    Google Scholar 

  11. Chan, T.F., Vese, L.A.: Image segmentation using level sets and the piecewise-constant Mumford-Shah model. In: Technical Report 0014, Computational Applied Math Group. Citeseer (2000)

  12. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    MATH  Google Scholar 

  13. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Feng, C., Zhao, D., Huang, M.: Image segmentation and bias correction using local inhomogeneous iNtensity clustering (LINC): a region-based level set method. Neurocomputing 219, 107–129 (2017)

    Google Scholar 

  17. Zhang, K., Zhang, L., Lam, K.-M., Zhang, D.: A local active contour model for image segmentation with intensity inhomogeneity. arXiv preprint arXiv:1305.7053 (2013)

  18. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE (2007)

  19. Liu, S., Peng, Y.: A local region-based Chan–Vese model for image segmentation. Pattern Recogn. 45(7), 2769–2779 (2012)

    MATH  Google Scholar 

  20. Huang, G., Ji, H., Zhang, W.: A fast level set method for inhomogeneous image segmentation with adaptive scale parameter. Magn. Reson. Imaging 52, 33–45 (2018)

    Google Scholar 

  21. Cai, Q., Liu, H., Zhou, S., Sun, J., Li, J.: An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation. Pattern Recogn. 82, 79–93 (2018)

    Google Scholar 

  22. Zong, J.-J., Qiu, T.-S., Li, W.-D., Guo, D.-M.: Automatic ultrasound image segmentation based on local entropy and active contour model. Comput. Math. Appl. 78, 929–943 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Han, B., Wu, Y.: SAR river image segmentation by active contour model inspired by exponential cross entropy. J. Indian Soc. Remote Sens. 47(2), 201–212 (2019)

    MathSciNet  Google Scholar 

  24. Hong, C., Xiaosheng, Y., Chengdong, W.: Active contour model based on partition entropy and local fitting energy. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 3501–3506. IEEE (2018)

  25. Wang, L., Chen, G., Shi, D., Chang, Y., Chan, S., Pu, J., Yang, X.: Active contours driven by edge entropy fitting energy for image segmentation. Signal Process. 149, 27–35 (2018)

    Google Scholar 

  26. Chen, Y., Liang, H., Yue, X., Zhou, Q.: Active contour model with entropy-based constraint for image segmentation. In: 2016 SAI Computing Conference (SAI), pp. 259–263. IEEE (2016)

  27. Meziou, L., Histace, A., Precioso, F., Matuszewski, B., Carreiras, F.: Fractional entropy based active contour segmentation of cell nuclei in actin-tagged confocal microscopy images (2012)

  28. He, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. Signal Process. 92(2), 587–600 (2012)

    Google Scholar 

  29. Chatterjee, A., Siarry, P., Nakib, A., Blanc, R.: An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy. Eng. Appl. Artif. Intell. 25(8), 1698–1709 (2012)

    Google Scholar 

  30. Li, C., Wang, X., Eberl, S., Fulham, M., Feng, D.D.: Robust model for segmenting images with/without intensity inhomogeneities. IEEE Trans. Image Process. 22(8), 3296–3309 (2013)

    Google Scholar 

  31. Zhang, K., Zhang, L., Lam, K.-M., Zhang, D.: A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. Cybern. 46(2), 546–557 (2015)

    Google Scholar 

  32. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters (1973)

  33. Lei, T., Liu, P., Jia, X., Zhang, X., Meng, H., Nandi, A.K.: Automatic Fuzzy Clustering Framework for Image Segmentation (2019)

  34. Lei, T., Jia, X., Zhang, Y., Liu, S., Meng, H., Nandi, A.K.: Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 27(9), 1753–1766 (2018)

    Google Scholar 

  35. Rastgarpour, M., Shanbehzadeh, J., Soltanian-Zadeh, H.: A hybrid method based on fuzzy clustering and local region-based level set for segmentation of inhomogeneous medical images. J. Med. Syst. 38(8), 68 (2014)

    MATH  Google Scholar 

  36. Kirschner, M., Jung, F., Wesarg, S.: Automatic prostate segmentation in MR images with a probabilistic active shape model. In: MICCAI Grand Challenge: Prostate MR Image Segmentation 2012 (2012)

  37. Chack, S., Sharma, P.: An improved region based active contour model for medical image segmentation. Int. J. Signal Process. Image Process. Pattern Recognit. 8(1), 115–124 (2015)

    Google Scholar 

  38. Wang, L., Zhu, J., Sheng, M., Cribb, A., Zhu, S., Pu, J.: Simultaneous segmentation and bias field estimation using local fitted images. Pattern Recogn. 74, 145–155 (2018)

    Google Scholar 

  39. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Google Scholar 

  40. Szilagyi, L., Benyo, Z., Szilágyi, S.M., Adam, H.: MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), pp. 724–726. IEEE (2003)

  41. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Google Scholar 

  42. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1907–1916 (2004)

    Google Scholar 

  43. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)

    MATH  Google Scholar 

  44. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Zaixin, Z., Lizhi, C., Guangquan, C.: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation. IET Image Proc. 8(3), 150–161 (2013)

    Google Scholar 

  47. Guo, F.-F., Wang, X.-X., Shen, J.: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation. IET Image Proc. 10(4), 272–279 (2016)

    Google Scholar 

  48. Shiozaki, A.: Edge extraction using entropy operator. Comput. Vis. Graph. Image Process. 36(1), 1–9 (1986)

    Google Scholar 

  49. Alipour, S., Shanbehzadeh, J.: Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method. Mach. Vis. Appl. 25(6), 1469–1488 (2014)

    Google Scholar 

  50. BrainWeb: Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/

  51. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Google Scholar 

  52. Ali, H., Rada, L., Badshah, N.: Image segmentation for intensity inhomogeneity in presence of high noise. IEEE Trans. Image Process. 27(8), 3729–3738 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rahmanimanesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Figs. 18, 19, 20, 21, 22, 23, and 24.

Fig. 18
figure 18

Results of FLIC on medical images. First column: original image, second: FRFCM result, third: LIC result, fourth: FLIC result (final segmentation results in a red curve)

Fig. 19
figure 19

Results of FLIC on noisy medical images. First column: original image, noisy image with Gaussian noise (0.03), second: FRFCM result as initial contour, third: FLIC result (final segmentation results in a red curve)

Fig. 20
figure 20

Results of FLIC on noisy medical images. First column: original image, second: noisy image with Gaussian noise (0.10), third: FRFCM result as initial contour, fourth: FLIC result (final segmentation results in a red curve)

Fig. 21
figure 21

Results of FLIC on noisy medical images. First column: original image, second: noisy image (salt and pepper 2%), third: FRFCM result as initial contour, fourth: FLIC result (final segmentation results in red curve)

Fig. 22
figure 22

Results of FLIC on noisy medical images. First column: original image, second: noisy image (salt and pepper 10%), third: FRFCM result as initial contour, fourth: FLIC result (final segmentation results in a red curve)

Fig. 23
figure 23

Results of FLIC on noisy medical images. First column: original image, second: noisy image (salt and pepper 20%), third: FRFCM result as initial contour, fourth: FLIC result (final segmentation results in a red curve)

Fig. 24
figure 24

Segmentation of FLIC in color images. First column: original image, second: FLIC segmentation results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P. et al. Fuzzy local intensity clustering (FLIC) model for automatic medical image segmentation. Vis Comput 37, 1185–1206 (2021). https://doi.org/10.1007/s00371-020-01861-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01861-1

Keywords

Navigation