Skip to main content
Log in

Lesson learned from the recovery of an orphan source inside a maritime cargo: analysis of the nuclear instrumentations used, and measures realized during the operations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the authors analyze the case study of the recovery of an orphan source of 60Co inside a maritime cargo full of metal wastes in the Italian Harbor of Genova carried out by the Italian Fire Fighters. Orphan radioactive sources or Radiological Dispersal Devices are a critical security issue in large geographical areas, and they result in a safety concern for people who may become accidentally exposed to ionizing radiation. The abandonment of orphan sources can usually be related to three factors: human errors, cost reasons (in order to avoid the payment of disposal procedures), or malevolent purposes (like the production of dirty bombs). The present data concern the nuclear safety measures implemented during the recovery event and the pool of procedures carried out in order to reduce the risks for the involved harbor operators. Following data collection and analysis, an important lesson about the management of such events and scenarios can be learned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This action was planned and realized with the help of the Bomb Squad of the Italian Police State.

References

  1. S. Agosteo, Overview of novel techniques for radiation protection and dosimetry. Radiat. Meas. 45(10), 1171–1177 (2010)

    Article  Google Scholar 

  2. S. Agosteo, P.G. Fallica, A. Fazzi, M.V. Introini, A. Pola, G. Valvo, A pixelated silicon telescope for solid state microdosimetry. Radiat. Meas. 43, 585–589 (2008)

    Article  Google Scholar 

  3. Automess (2019). https://www.automess.de/6150AD_E.htm

  4. M.M. Bourne, C. Mussi, E.C. Miller, S.D. Clarke, S.A. Pozzi, A. Gueorguiev, Characterization of the CLYC detector for neutron and photon detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel Spectrom. Detect. Assoc. Equip. 736, 124–127 (2014)

    Article  ADS  Google Scholar 

  5. M. Braeckeveldt et al., The belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources. in Proceedings of the 11th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2007 (2007)

  6. R.D. Breukers, C.M. Bartle, A. Edgar, Transparent lithium loaded plastic scintillators for thermal neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 701, 58–61 (2013)

    Article  ADS  Google Scholar 

  7. F. Campi, A.A. Porta, Sensitivity tests and risk evaluation for steelworks portal systems. Radiat. Meas. 39(2005), 161–173 (2005)

    Article  Google Scholar 

  8. S.G. Cappello, C. Pace, A. Parlato, S. Rizzo, E. Tomarchio, Gamma-ray irradiation tests of CMOS sensors used in imaging techniques. Nucl. Technol. Radiat. Prot. 29(suppl), 14–19 (2014)

    Article  Google Scholar 

  9. F. d’Errico, A. Di Fulvio, M. Maryañski, S. Selici, M. Torrigiani, Optical readout of superheated emulsions. Radiat. Meas. 43, 432–436 (2008)

    Article  Google Scholar 

  10. F. d’Errico, F. Felici, A. Chierici, R. Zagarella, Detection of special nuclear material with a transportable active interrogation system. Eur. Phys. J. Plus 133, 451 (2018)

    Article  Google Scholar 

  11. F. d’Errico, G. Felici, R. Zagarella, A novel and transportable active interrogation system for special nuclear material interdiction. in: Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference, ed. by A. Malizia, M. D’Arienzo. (Springer, Cham, 2018b)

  12. R. Downes, C. Hobbs, D. Salisbury, Combating nuclear smuggling? Exploring drivers and challenges to detecting nuclear and radiological materials at maritime facilities. Nonprolif. Rev. 26(1–2), 83–104 (2019). https://doi.org/10.1080/10736700.2019.1610256

    Article  Google Scholar 

  13. K.E. Duftschmid, Over the border—the problems of uncontrolled radioactive materials crossing national borders. J. Radiol. Prot. 22, 31–43 (2002)

    Article  Google Scholar 

  14. A.J. Eastburg, Assessing the dose after a radiological dispersal device (RDD) attack using a military Radiac Instrument. Master of Science in the School of Mechanical Engineering, Georgia Institute of Technology (2010). https://smartech.gatech.edu/bitstream/handle/1853/39604/eastburg_amy_j_201005_mast.pdf

  15. E. Fanchini, Performance of an RPM based on Gd-lined plastic scintillator for neutron and gamma detection. IEEE Trans. Nucl. Sci. 63(1), 392–399 (2016)

    Article  ADS  Google Scholar 

  16. G.M. Gaukler, R. Cannaday, S.S. Chirayath, Y. Ding, Detecting nuclear materials smuggling: using radiography to improve container inspection policies. Ann. Oper. Res. 187(1), 65–87 (2011)

    Article  MathSciNet  Google Scholar 

  17. G.M. Gaukler, C. Li, Y. Ding, S.S. Chirayath, Detecting nuclear materials smuggling: performance evaluation of container inspection policies. Risk Anal. 32(3), 531–554 (2012)

    Article  Google Scholar 

  18. M. Giot et al., Nuclear instrumentation and measurement: a review based on the ANIMMA conferences. EPJ Nucl. Sci. Technol. 3, 33 (2017)

    Article  ADS  Google Scholar 

  19. K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, J.A. González, R. Méndez Villafañe, A. Lorente, S. Ibañez-Fernández, Performance of 10B + ZnS(Ag) neutron detectors in RPM for the detection of special nuclear materials. Radiat. Meas. 107, 58–66 (2017)

    Article  Google Scholar 

  20. B.S. Henderson, Analysis of the Frequency and Detectability of Objects Resembling Nuclear/Radiological Threats in Commercial Cargo. (2019). Physics.soc-ph. arXiv:1901.03753

  21. J. Heyse, M. Anastasiou, R. Eykens, A. Moens, A.J.M. Plompen, P. Schillebeeckx, R. Wynants, Development of a secondary neutron fluence standard at GELINA. in Proceedings of the 3rd International Conference ANIMMA (2013), pp. 1–3

  22. J.P. Hudelot, J. Lecerf, Y. Garnier, G. Ritter, O. Guéton, A.C. Colombier, F. Rodiac, C. Domergue, A complete dosimetry experimental program in support of the core characterization and of the power calibration of the CABRI reactor. in Proceedings of the 4th International Conference ANIMMA (2015), pp. 1–8

  23. ICRP, 2007 Recommendations of the International Commission on Radiological Protection (Users Edition). ICRP Publication 103 (Users Edition). Ann. ICRP 37 (2007), pp. 2–4

  24. C. Jammes, P. Filliatre, B. Geslot, T. Domenech, S. Normand, Assessment of the high temperature fission chamber technology for the French fast reactor program. IEEE Trans. Nucl. Sci. 59, 1351 (2012)

    Article  ADS  Google Scholar 

  25. J.I. Katz, G.S. Blanpied, K.N. Borozdin, C. Morris, X-Radiography of Cargo Containers (2007). Physics.soc-ph. arXiv:0708.2546

  26. C.C. Lawrence, M. Febbraro, M. Flaska, S.A. Pozzi, F.D. Becchetti, Warhead verification as inverse problem: applications of neutron spectrum unfolding from organic-scintillator measurement. J. Appl. Phys. 120(6), 064501 (2016)

    Article  ADS  Google Scholar 

  27. J.O. Lubenau, A Historical Overview of Orphan Sources and Radioactivity in Scrap Metals. Japan Health Physics Society, Tokyo (Japan); 1 v; May 2000; [3 p.]; IRPA-10: 10. in International congress of the International Radiation Protection Association; Hiroshima (Japan) (2000), pp. 14–19

  28. Mirion, (2018). https://www.radpro-int.com/tld-1/tld-cards-whole-body/

  29. Mirion, (2019). https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/hds-handheld-search-and-isotope-identification-device.pdf?1523553912

  30. Ortec, (2019). https://www.ortec-online.com/-/media/ametekortec/manuals/detective-exdx-100t-mnl.pdf

  31. S. Pomp, Tutorial on neutron physics in dosimetry. Radiat. Meas. 45(10), 1090–1095 (2010)

    Article  Google Scholar 

  32. S. Pesente et al., Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal. AIP Conf. Proc. 1265, 387 (2010). https://doi.org/10.1063/1.3480208

    Article  ADS  Google Scholar 

  33. P.B. Rose, A.S. Erickson, M. Mayer, J. Nattress, I. Jovanovic, Uncovering special nuclear materials by low-energy nuclear reaction imaging. Sci. Rep. 2016(6), 24388 (2016)

    Article  ADS  Google Scholar 

  34. H. Rosoff, D. Von Winterfeldt, A risk and economic analysis of dirty bomb attacks on the ports of Los Angeles and long beach. Risk Anal. 27(3), 533–546 (2007)

    Article  Google Scholar 

  35. I. Sakari et al., European Reference Network for Critical Infrastructure Protection: Novel detection technologies for nuclear security. JRC112304, EUR 29270 EN, ISBN 978-92-79-87925-8, ISSN 1831-9424 (2018). https://doi.org/10.2760/703301

  36. B. Seitz, Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications. 2012, JINST, 7:C01031. The International Conference On Position Sensitive Detectors, 12–16 September 2011, Aberystwyth, U.K (2012)

  37. L. Sihver, N. Yasuda, Causes and radiological consequences of the chernobyl and fukushima nuclear accidents. J. Nucl. Radiat. Sci. 4(2), 020914 (2018)

    Article  Google Scholar 

  38. G. Takoudis, S. Xanthos, A. Clouvas, C. Potiriadis, Determining minimum alarma ctivities of orphan sources in scrap loads; Monte Carlo simulations, validated with measurements. Nucl. Instrum. Methods Phys. Res. A614, 57–67 (2010)

    Article  ADS  Google Scholar 

  39. R.J. Tanner, L.G. Hager, J.S. Eakins, The response of the PHE neutron personal dosemeter in terms of the proposed ICRU personal dose equivalent. Radiat. Prot. Dosim. 180(1–4), 17–20 (2018)

    Article  Google Scholar 

  40. Thermofisher, (2019). https://www.thermofisher.com/order/catalog/product/4254002#/4254002

Download references

Acknowledgements

The acknowledgments for these data are for the Italian Ministry of Interior the Atomic Laboratory of the Italian Firefighters, the Firefighters Commands of Roma ad Genova and the Bomb Squads of the Italian Police State Department. A thanks to Ing. Michele Mazzaro (Italian Fire Fighters - Qualified Expert of 3 level for the first phase of operation), Ing. Luca Rosiello (Italian Fire Fighters - Qualified Expert of 3 level for the first phase of operation), Ing. Alessandro Segatori (Italian Fire Fighters – Logistic coordinator of the operation and responsible for the “C shape” building), Ing. Marco Frezza (Italian Fire Fighters, Main Coordinator of all the operation mentioned in this paper) and Ing. Giuseppe Paduano (Italian Fire Fighters, manager of Atomic Laboratory). The authors want to thank also the University of Pisa and the University of Rome Tor Vergata for the support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malizia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malizia, A., Perna, R., Melmeluzzi, R. et al. Lesson learned from the recovery of an orphan source inside a maritime cargo: analysis of the nuclear instrumentations used, and measures realized during the operations. Eur. Phys. J. Plus 135, 468 (2020). https://doi.org/10.1140/epjp/s13360-020-00487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00487-5

Navigation