Skip to main content
Log in

Quantum correlations and quantum Fisher information of two qubits in the presence of the time-dependent coupling effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider two separate Jaynes–Cummings (JC) nodes with a nonidentical qubit-field system in the presence of dissipation terms. We reveal the influence of the time variation of the coupling terms on some important measures when the qubits are immersed in a vacuum. The density matrix for the two qubits initially in Bell states are obtained. The dynamical behavior of the quantum discord (QD), classical correlation (CC), qubit-qubit entanglement, and quantum Fisher information (QFI) is investigated. We explore the relationship among QD, CC, qubit-qubit entanglement, and QFI in the absence and presence of the dissipation effect during the time evolution. Furthermore, we show the main optimal conditions for obtaining a high level of correlation and coherence between the two qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. Y. Yamamoto, K. Semba, Principles and Methods of Quantum Information Technologies (Springer, Berlin, 2016)

    MATH  Google Scholar 

  2. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, J. Cryptol. 5, 3 (1992)

    Google Scholar 

  3. T. Geza, Phys. Rev. A 85, 022322 (2012)

    Google Scholar 

  4. K. Berrada, F.F. Fanchini, S. Abdel-Khalek, Phys. Rev. A 85, 052315 (2012)

    ADS  Google Scholar 

  5. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  6. S. Luo, Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

  7. K. Berrada, H. Eleuch, Y. Hassouni, J. Phys. B 44, 145503 (2013)

    ADS  Google Scholar 

  8. B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    ADS  Google Scholar 

  9. S. Luo, Phys. Rev. A 77, 022301 (2008)

    ADS  Google Scholar 

  10. S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)

    ADS  Google Scholar 

  11. O.E. Barndorff-Nielsen, R.D. Gill, P.E. Jupp, J.R. Statist, Soc. B 65, 775 (2003)

    Google Scholar 

  12. S. Abdel-Khalek, K. Berrada, A.-S.F. Obada, Eur. Phys. J. D 66, 69 (2012)

    ADS  Google Scholar 

  13. A.S.-F. Obada, S. Abdel-Khalek, Phys. A 389, 891 (2010)

    Google Scholar 

  14. S. Abdel-Khalek, Opt. Quant. Electron. 46, 1055 (2014)

    Google Scholar 

  15. S. Abdel-Khalek, Quant. Inf. Process. 12, 3761 (2013)

    ADS  MathSciNet  Google Scholar 

  16. K. Berrada, S. Abdel-Khalek, A.-S.F. Obada, Phys. Lett. A 376, 1412 (2012)

    ADS  Google Scholar 

  17. X. Lu, X. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    ADS  Google Scholar 

  18. S. Abdel-Khalek, Ann. Phys. 351, 952 (2014)

    ADS  Google Scholar 

  19. S. Kim, L. Li, A. Kumar, J. Wu, Phys. Rev. A 97, 032326 (2018)

    ADS  MathSciNet  Google Scholar 

  20. F. Fröwis, M. Fadel, P. Treutlein, N. Gisin, N. Brunner, Phys. Rev. A 99, 040101 (2019)

    ADS  Google Scholar 

  21. A.T. Rezakhani, M. Hassani, S. Alipour, Phys. Rev. A 100, 032317 (2019)

    ADS  MathSciNet  Google Scholar 

  22. L. Qing-hong, G. Li-hua, Acta Photonica Sinica 41, 348 (2012)

    Google Scholar 

  23. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    ADS  MathSciNet  Google Scholar 

  24. S. Abdel-Khalek, K. Berrada, S. Alkhateeb, Results Phys. 6, 780 (2016)

    ADS  Google Scholar 

  25. L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001)

    ADS  Google Scholar 

  26. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    ADS  Google Scholar 

  27. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)

    ADS  Google Scholar 

  28. A. Brodutch, D.R. Terno, Phys. Rev. A 83, 010301(R) (2011)

    ADS  Google Scholar 

  29. M. Gu et al., Nat. Phys. 8, 671 (2012)

    Google Scholar 

  30. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Phys. Rev. A 83, 032324 (2011)

    ADS  Google Scholar 

  31. V. Madhok, A. Dutta, Phys. Rev. A 83, 032323 (2011)

    ADS  Google Scholar 

  32. B. Dakic et al., Nat. Phys. 8, 666 (2012)

    Google Scholar 

  33. J.-S. Xu, C.-F. Li, Int. J. Mod. Phys. B 27, 1345054 (2013)

    ADS  Google Scholar 

  34. F. Mirmasuodi, S. Ahadpour, J. Modern Opt. 64, 1315–1320 (2017)

    Google Scholar 

  35. M.-L. Huab, X.-H. Jieci, W.Y. Penga, Y.-R. Zhangefa, H. Fanagh, Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  Google Scholar 

  36. W. Xia, J.-X. Hou, X.-H. Wang, S.-Y. Liu, Sci. Rep. 8, 5325 (2018)

    ADS  Google Scholar 

  37. X.-Y. Li, Q.-S. Zhu, M.-Z. Zhu, H. Wu, S.-Y. Wu, M.-C. Zhu, Sci. Rep. 9, 14739 (2019)

    ADS  Google Scholar 

  38. M. Yönaç, J.H. Eberly, Phys. Rev. A 82, 022321 (2010)

    ADS  Google Scholar 

  39. L.-T. Shen, Z.-C. Shi, H.-Z. Wu, Z.-B. Yang, Entropy 19, 331 (2017)

    ADS  Google Scholar 

  40. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    ADS  Google Scholar 

  41. M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999)

    ADS  Google Scholar 

  42. W.K. Wootters, Quant. Inform. Comput. 1, 27 (2011)

    Google Scholar 

  43. von Neumann J.: The measuring process in mathematische grundlagen der quantenmechanik, Ch. V. Springer, Berlin (1932)

  44. S.J.D. Phoenix, P.L. Knight, Phys. Rev. A 44, 6023 (1991)

    ADS  Google Scholar 

  45. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  46. L. Henderson, V. Vedral, J. Phys. A34, 6899 (2001)

    ADS  Google Scholar 

  47. R. A. Fisher, Proc. Cambridge Phil. Soc. 1929, 22, 700 reprinted in Collected Papers of R. A. Fisher, edited by J. H. Bennett (Univ. of Adelaide Press, South Australia), 15-40 (1972)

  48. F. Pennini, A. Plastino, Phys. Lett. A 326, 20 (2004)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-Msc-9-130-40). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffah, B., Abdel-Khalek, S., Berrada, K. et al. Quantum correlations and quantum Fisher information of two qubits in the presence of the time-dependent coupling effect. Eur. Phys. J. Plus 135, 467 (2020). https://doi.org/10.1140/epjp/s13360-020-00423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00423-7

Navigation