Skip to main content
Log in

Hydrogen-ion Sensing Characteristics of Cavity Based Triple-Gate Junctionless Biofet for Enhanced Sensitivity

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a triple gate (TG) cavity based, polysilicon junctionless (JL) ion-sensitive field-effect transistor (ISFET) architecture has been proposed for the first time. The performance of the proposed device has been compared with conventionally doped ISFET. The effect of pH is investigated for different adhesion layers, device layer thickness (tsi), electrolyte thickness (te) and, channel lengths (L). Threshold voltage(\(\frac {\triangle {V_{th}}}{\triangle {pH}}\)) has been used as sensing metric for analysis and comparison. Besides, ION/IOFF ratio has also been measured for different pH. The average maximum threshold voltage sensitivity of the proposed device has been measured and found to be 72.5%, 49.5%, and 53.7% better than TG-conventional ISFET for different adhesion layers, device layer thickness, and channel lengths respectively. Furthermore, the effect of channel lenghth on threshold voltage sensitivity has also been studied. It is observed that the sensitivity increases with increase in channel length. The implementation and all the simulations have been performed by using the ATLAS device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 1:70–71

    Article  Google Scholar 

  2. Bergveld P (2003) Thirty years of isfetology: What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B Chem 88(1):1–20

    Article  CAS  Google Scholar 

  3. Shafi N, Sahu C, Periasamy C (2019) Fabrication and ph sensitivity analysis of in-situ doped polycrystalline silicon thin-film junctionless biofet. IEEE Electron Dev Lett 40(6):997–1000

    Article  CAS  Google Scholar 

  4. James D (2012) Intel ivy bridge unveiled—the first commercial tri-gate, high-k, metal-gate cpu. In: Proceedings of the IEEE, 2012 custom integrated circuits conference. IEEE, pp 1–4

  5. Agrawal N, Kimura Y, Arghavani R, Datta S (2013) Impact of transistor architecture (bulk planar, trigate on bulk, ultrathin-body planar soi) and material (silicon or iii–v semiconductor) on variation for logic and sram applications. IEEE Trans Electron Dev 60(10):3298–3304

    Article  CAS  Google Scholar 

  6. Colinge J-P, et al (2008) FinFETs and other multi-gate transistors, vol 73, Springer, Berlin

  7. Sun X, Moroz V, Damrongplasit N, Shin C, Liu T-JK (2011) Variation study of the planar ground-plane bulk mosfet, soi finfet, and trigate bulk mosfet designs. IEEE Trans Electron Dev 58(10):3294–3299

    Article  Google Scholar 

  8. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348

    Article  CAS  Google Scholar 

  9. Duarte-Guevara C, Lai F-L, Cheng C-W., Reddy JrB., Salm E, Swaminathan V, Tsui Y-K, Tuan H C, Kalnitsky A, Liu Y-S et al (2014) Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated isfets. Anal Chem 86(16):8359–8367

    Article  CAS  Google Scholar 

  10. Guiducci C, Spiga FM (2013) Another transistor-based revolution: On-chip qpcr. Nat Methods 10(7):617

    Article  CAS  Google Scholar 

  11. Feng W, Hettiarachchi R, Sato S, Kakushima K, Niwa M, Iwai H, Yamada K, Ohmori K (2011) Advantages of silicon nanowire mosfets over planar ones investigated from the viewpoints of static and noise properties. In: Proceedings of the international conference on solid state devices and materials, Nagoya, Japan, pp 2–5

  12. Chen K-I, Li B-R, Chen Y-T (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2):131–154

    Article  CAS  Google Scholar 

  13. Accastelli E, Scarbolo P, Ernst T, Palestri P, Selmi L, Guiducci C (2016) Multi-wire tri-gate silicon nanowires reaching milli-ph unit resolution in one micron square footprint. Biosensors 6(1):9

    Article  Google Scholar 

  14. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  Google Scholar 

  15. Elfström N, Karlström AE, Linnros J (2008) Silicon nanoribbons for electrical detection of biomolecules. Nano Lett 8(3):945–949

    Article  Google Scholar 

  16. Li J, Zhang Y, To S, You L, Sun Y (2011) Effect of nanowire number, diameter, and doping density on nano-fet biosensor sensitivity. ACS Nano 5(8):6661–6668

    Article  CAS  Google Scholar 

  17. Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Dev 54(12):3400– 3408

    Article  CAS  Google Scholar 

  18. Chen Y, Wang X, Hong M, Erramilli S, Mohanty P (2008) Surface-modified silicon nano-channel for urea sensing. Sens Actuators B Chem 133(2):593–598

    Article  CAS  Google Scholar 

  19. Stern E, Vacic A, Reed MA (2008) Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans Electron Dev 55(11):3119–3130

    Article  CAS  Google Scholar 

  20. Ramgir NS, Yang Y, Zacharias M (2010) Nanowire-based sensors. Small 6(16):1705–1722

    Article  CAS  Google Scholar 

  21. Buitrago E, Fagas G, Badia M. F-B, Georgiev YM, Berthomé M, Ionescu A M (2013) Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens Actuators B Chem 183:1–10

    Article  CAS  Google Scholar 

  22. Colinge J-P, Lee C-W., Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’neill B, Blake A, White M et al (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225

    Article  CAS  Google Scholar 

  23. Lee C-W, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge J-P (2010) Performance estimation of junctionless multigate transistors. Solid-State Electron 54(2):97–103

    Article  Google Scholar 

  24. Sahu C, Singh J (2014) Charge-plasma based process variation immune junctionless transistor. IEEE Electron Dev Lett 35(3):411–413

    Article  CAS  Google Scholar 

  25. Gnani E, Gnudi A, Reggiani S, Baccarani G (2012) Physical model of the junctionless utb soi-fet. IEEE Trans Electron Dev 59(4):941–948

    Article  Google Scholar 

  26. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L (2015) A tcad-based methodology to model the site-binding charge at isfet/electrolyte interfaces. IEEE Trans Electron Dev 62(10):3379–3386

    Article  CAS  Google Scholar 

  27. Chung I-Y, Jang H, Lee J, Moon H, Seo SM, Kim DH (2012) Simulation study on discrete charge effects of sinw biosensors according to bound target position using a 3d tcad simulator. Nanotechnology 23(6):065202

    Article  Google Scholar 

  28. Pittino F, Palestri P, Scarbolo P, Esseni D, Selmi L (2014) Models for the use of commercial tcad in the analysis of silicon-based integrated biosensors. Solid-State Electron 98:63–69

    Article  CAS  Google Scholar 

  29. Bousse L, De Rooij NF, Bergveld P (1983) Operation of chemically sensitive field-effect sensors as a function of the insulator- electrolyte interface. IEEE Trans Electron Dev 30(10):1263–1270

    Article  Google Scholar 

  30. Koneshan S, Rasaiah JC, Lynden-Bell R, Lee S (1998) Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 c. J Phys Chem B 102(21):4193–4204

    Article  CAS  Google Scholar 

  31. Koneshan S, Rasaiah JC, Lynden-Bell R, Lee S (1998) Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 c. J Phys Chem B 102(21):4193–4204

    Article  CAS  Google Scholar 

  32. Zhou K, Zhao Z, Pan L, Wang Z (2019) Silicon nanowire ph sensors fabricated with cmos compatible sidewall mask technology. Sens Actuators B Chem 279:111–121

    Article  CAS  Google Scholar 

  33. Shafi N, Sahu C, Periasamy C (2018) Virtually doped sige tunnel fet for enhanced sensitivity in biosensing applications. Superlattices Microstruct 120:75–89

    Article  CAS  Google Scholar 

  34. Jang H-J, Cho W-J (2012) Fabrication of high-performance fully depleted silicon-on-insulator based dual-gate ion-sensitive field-effect transistor beyond the nernstian limit. Appl Phys Lett 100(7):073701

    Article  Google Scholar 

  35. Ahn J-H, Kim J-Y, Seol M-L, Baek DJ, Guo Z, Kim C-H, Choi S-J, Choi Y-K (2013) A ph sensor with a double-gate silicon nanowire field-effect transistor. Appl Phys Lett 102(8):083701

    Article  Google Scholar 

  36. Gasparyan F, Zadorozhnyi I, Khondkaryan H, Arakelyan A, Vitusevich S, Photoconductivity ph sensitivity (2018) noise, and channel length effects in si nanowire fet sensors. Nanoscale Res Lett 13(1):87

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Department of Science and Technology (DST) and science and engineering research board (SERB), Government of India for financial support under project no. ECR/2017/000216. The authors would also like to acknowledge the assistance from VLSI LAB under special man power development programme (SMDP) MNIT Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydeep Singh Parmar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, J.S., Shafi, N. & Sahu, C. Hydrogen-ion Sensing Characteristics of Cavity Based Triple-Gate Junctionless Biofet for Enhanced Sensitivity. Silicon 13, 1391–1401 (2021). https://doi.org/10.1007/s12633-020-00526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00526-x

Keywords

Navigation