Skip to main content
Log in

Multi-layered Graphene Silica-Based Tunable Absorber for Infrared Wavelength Based on Circuit Theory Approach

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene can be utilized as a tunable material for a wide range of infrared wavelength regions due to its tunable conductivity property. In this paper, we use Y-shaped silver material resonator placed over the top of multiple graphene silica-layered structures to realize the perfect absorption over the infrared wavelength region. We propose four different designs by placing the graphene sheet over silica. The absorption and reflectance performance of the structures have been explored for 1500- to 1600-nm wavelength range. The proposed design also explores the absorption tunability of the structure for the different values of graphene chemical potential. We have reported the negative impedance for the perfect absorption for proposed metamaterial absorber structures. All the metamaterial absorbers have reported 99% of its absorption peaks in the infrared wavelength region. These designs can be used as a tunable absorber for narrowband and wideband applications. The proposed designs will become the basic building block of large photonics design which will be applicable for polariser, sensor, and solar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geim A (2011) Graphene — the perfect atomic lattice. Uspekhi Fiz Nauk 181:1283. https://doi.org/10.3367/ufnr.0181.201112d.1283

    Article  Google Scholar 

  2. Koppens FHL, Chang DE, De Abajo FJG (2011) Graphene plasmonics: a platform for strong LightÀMatter. Nano Lett 11:3370–3377. https://doi.org/10.1103/PhysRevLett.99.016803

    Article  CAS  Google Scholar 

  3. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215. https://doi.org/10.1038/nnano.2008.67

    Article  CAS  Google Scholar 

  4. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. https://doi.org/10.1039/c0jm02922j

    Article  CAS  Google Scholar 

  5. Tielrooij KJ, Song JCW, Jensen SA, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov LS, Koppens FHL (2013) Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys 9:248–252. https://doi.org/10.1038/nphys2564

    Article  CAS  Google Scholar 

  6. Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, Xu X (2012) Ultrafast hot-carrier-dominated photocurrent in graphene. Nat Nanotechnol 7:114–118. https://doi.org/10.1038/nnano.2011.243

    Article  CAS  Google Scholar 

  7. Patel SK, Ladumor M, Sorathiya V, Guo T (2019) Graphene based tunable grating structure. Mater. Res. Express. 6:025602. https://doi.org/10.1088/2053-1591/aaea9a

    Article  CAS  Google Scholar 

  8. Parmar J, Patel SK, Ladumor M, Sorathiya V, Katrodiya D (2019) Graphene-silicon hybrid chirped-superstructure Bragg gratings for far infrared frequency. Mater Res Express 6:065606. https://doi.org/10.1088/2053-1591/ab0b5d

    Article  CAS  Google Scholar 

  9. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402. https://doi.org/10.1103/PhysRevLett.100.207402

    Article  CAS  Google Scholar 

  10. Rufangura P, Sabah C (2018) Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells. J Nanophotonics 12:1. https://doi.org/10.1117/1.jnp.12.026002

    Article  Google Scholar 

  11. Thomas L, Sorathiya V, Patel SK, Guo T (2019) Graphene-based tunable near-infrared absorber. Microw Opt Technol Lett 61:1161–1165. https://doi.org/10.1002/mop.31712

    Article  Google Scholar 

  12. Katrodiya D, Jani C, Sorathiya V, Patel SK (2019) Metasurface based broadband solar absorber. Opt Mater (Amst) 89:34–41. https://doi.org/10.1016/j.optmat.2018.12.057

    Article  CAS  Google Scholar 

  13. Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19:17413. https://doi.org/10.1364/OE.19.017413

    Article  CAS  Google Scholar 

  14. Tuong PV, Park JW, Rhee JY, Kim KW, Jang WH, Cheong H, Lee YP (2013) Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl Phys Lett 102:081122. https://doi.org/10.1063/1.4794173

    Article  CAS  Google Scholar 

  15. Dave V, Sorathiya V, Guo T, Patel SK (2018) Graphene based tunable broadband far-infrared absorber. Superlattice Microst 124:113–120. https://doi.org/10.1016/j.spmi.2018.10.013

    Article  CAS  Google Scholar 

  16. Cheng F, Yang X, Gao J (2014) Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39:3185–3188. https://doi.org/10.1364/ol.39.003185

    Article  Google Scholar 

  17. Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I-C, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19:15221–15228. https://doi.org/10.1364/oe.19.015221

    Article  CAS  Google Scholar 

  18. Pradhan JK, Behera G, Agarwal AK, Ghosh A, Anantha Ramakrishna S (2017) Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies. J Phys D Appl Phys 50:245104. https://doi.org/10.1088/1361-6463/aa6cf6

    Article  CAS  Google Scholar 

  19. Zhou D, Liu Z, Jing Z, Liu Y, Cui W, Peng W, Gao H (2019) Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. J Opt Soc Am A 36:264. https://doi.org/10.1364/josaa.36.000264

    Article  CAS  Google Scholar 

  20. Zhu W, Xiao F, Kang M, Sikdar D, Liang X, Geng J, Premaratne M, Jin R (2016) MoS2 broadband coherent perfect absorber for terahertz waves. IEEE Photonics J 8:1–7. https://doi.org/10.1109/JPHOT.2016.2633571

    Article  Google Scholar 

  21. Kim YJ, Hwang JS, Yoo YJ, Khuyen BX, Rhee JY, Chen X, Lee Y (2017) Ultrathin microwave metamaterial absorber utilizing embedded resistors. J Phys D Appl Phys 50:405110. https://doi.org/10.1088/1361-6463/aa82f4

    Article  CAS  Google Scholar 

  22. Xu W, Sonkusale S (2013) Microwave diode switchable metamaterial reflector/absorber. Appl Phys Lett 103:031902. https://doi.org/10.1063/1.4813750

    Article  CAS  Google Scholar 

  23. Hao J, Zhou L, Qiu M (2011) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B - Condens Matter Mater Phys 83:1–12. https://doi.org/10.1103/PhysRevB.83.165107

    Article  CAS  Google Scholar 

  24. Rufangura P, Sabah C (2016) Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications. IET Optoelectron 10:211–216. https://doi.org/10.1049/iet-opt.2016.0003

    Article  Google Scholar 

  25. Mulla B, Sabah C (2015) Perfect metamaterial absorber design for solar cell applications. Waves Random Complex Media 25:382–392. https://doi.org/10.1080/17455030.2015.1042091

    Article  Google Scholar 

  26. Lee YP, Tuong PV, Zheng HY, Rhee JY, Jang WH (2012) An application of metamaterials: perfect absorbers. J Korean Phys Soc 60:1203–1206. https://doi.org/10.3938/jkps.60.1203

    Article  CAS  Google Scholar 

  27. Fink M (2014) Acoustic metamaterials: nearly perfect sound absorbers. Nat Mater 13:848–849. https://doi.org/10.1038/nmat4067

    Article  CAS  Google Scholar 

  28. Bakır M, Karaaslan M, Dincer F, Delihacioglu K, Sabah C (2016) Tunable perfect metamaterial absorber and sensor applications. J Mater Sci Mater Electron 27:12091–12099. https://doi.org/10.1007/s10854-016-5359-7

    Article  CAS  Google Scholar 

  29. Kazuma E, Tatsuma T (2014) In situ nanoimaging of photoinduced charge separation at the plasmonic Au nanoparticle-TiO2 interface. Adv Mater Interfaces 1:1400066. https://doi.org/10.1002/admi.201400066

    Article  CAS  Google Scholar 

  30. Tanzid M, Sobhani A, DeSantis CJ, Cui Y, Hogan NJ, Samaniego A, Veeraraghavan A, Halas NJ (2016) Imaging through plasmonic nanoparticles. Proc Natl Acad Sci 113:5558–5563. https://doi.org/10.1073/pnas.1603536113

    Article  CAS  Google Scholar 

  31. Tittl A, Michel AKU, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H (2015) A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 27:4597–4603. https://doi.org/10.1002/adma.201502023

    Article  CAS  Google Scholar 

  32. Tian X, Li Z-Y (2016) Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res 4:146. https://doi.org/10.1364/PRJ.4.000146

    Article  CAS  Google Scholar 

  33. Zare MS, Nozhat N, Rashiditabar R (2019) A strong controllable absorber using graphene-metal nanostructure. J Mod Opt 66:7–16. https://doi.org/10.1080/09500340.2018.1510055

    Article  CAS  Google Scholar 

  34. Wu J (2019) Ultra-narrow perfect graphene absorber based on critical coupling. Opt Commun 435:25–29. https://doi.org/10.1016/j.optcom.2018.11.018

    Article  CAS  Google Scholar 

  35. D. Xiao, Q. Liu, L. Lei, Y. Sun, Z. Ouyang, K. Tao, Coupled resonance enhanced modulation for a graphene-loaded metamaterial absorber, Nanoscale Res Lett 14 (2019) 0–5. doi:https://doi.org/10.1186/s11671-019-2852-y, 32

  36. Christy RW, Johnson PB (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1016/j.susc.2018.02.016

    Article  CAS  Google Scholar 

  37. Jiang J, Zhang Q, Ma Q, Yan S, Wu F, He X (2015) Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt Mater Express 5:1962. https://doi.org/10.1364/ome.5.001962

    Article  CAS  Google Scholar 

  38. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103 (2008). doi:https://doi.org/10.1063/1.2891452

  39. Huang H, Xia H, Guo Z, Xie D, Li H (2018) Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions. Appl Phys A Mater Sci Process 124:429. https://doi.org/10.1007/s00339-018-1844-6

    Article  CAS  Google Scholar 

  40. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  41. Petrone N, Dean CR, Meric I, van der Zande AM, Huang PY, Wang L, Muller D, Shepard KL, Hone J (2012) Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett 12:2751–2756. https://doi.org/10.1021/nl204481s

    Article  CAS  Google Scholar 

  42. Moreau E, Godey S, Ferrer FJ, Vignaud D, Wallart X, Avila J, Asensio MC, Bournel F, Gallet J-J (2010) Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Appl Phys Lett 97:241907. https://doi.org/10.1063/1.3526720

    Article  CAS  Google Scholar 

  43. T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C.L. Guo, High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse, Light Sci. Appl. 9 (2020). doi:https://doi.org/10.1038/s41377-020-0311-2

  44. Lu G, Zhou X, Li H, Yin Z, Li B, Huang L, Boey F, Zhang H (2010) Nanolithography of single-layer graphene oxide films by atomic force microscopy. Langmuir. 26:6164–6166. https://doi.org/10.1021/la101077t

    Article  CAS  Google Scholar 

  45. Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E (2011) Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene. Adv Mater 23:1246–1251. https://doi.org/10.1002/adma.201003847

    Article  CAS  Google Scholar 

  46. K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Electric field in atomically thin carbon films, Science (80-. ). 306 (2004) 666–669. doi:https://doi.org/10.1126/science.1102896

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K., Sorathiya, V., Lavadiya, S. et al. Multi-layered Graphene Silica-Based Tunable Absorber for Infrared Wavelength Based on Circuit Theory Approach. Plasmonics 15, 1767–1779 (2020). https://doi.org/10.1007/s11468-020-01191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01191-x

Keywords

Navigation