Skip to main content
Log in

Effect of Silicon Concentration on Melting Behavior of Scraps in Hot Metal

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To clarify the effects of Si concentration, temperature, and time on melting of the silicon steel, three silicon steels with different Si concentrations were used to conduct an experimental investigation of the melting of scrap cylinders under natural convection. Thermodynamics and kinetics of scrap cylinder melting were revealed and analyzed based on the experimental results. Carbon diffusion between the cylinders and hot metal during melting was modeled using Thermo-Calc 2017b software to evaluate the mass-transfer coefficients. Results showed that a higher Si concentration and lower melting temperature led to slower melting of the silicon steel scrap cylinder. The mass-transfer coefficient of C during the melting decreased with an increase of Si concentration. At 1623 K (1350 °C), the mass-transfer coefficients were 1.322 × 10−4, 0.436 × 10−4, and 0.142 × 10−4 m s−1 for low (0.30 mass pct), medium (1.58 mass pct), and high (3.21 mass pct) Si concentrations in the scrap cylinders, respectively; at a melting temperature of 1723 K (1450 °C), the values of the respective mass-transfer coefficients were 1.370 × 10−4, 0.613 × 10−4, and 0.289 × 10−4 m s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Pauliuk, R. L. Milford, D. B. Muller, and J. M. Allwood: Environ. Sci. Technol., 2013, vol. 47, pp. 3448–54.

    Article  CAS  Google Scholar 

  2. J. Johnson, B. K. Reck, T. Wang, and T. E. Graedel: Energy Policy, 2008, vol. 36, pp. 181–92.

    Article  Google Scholar 

  3. J. Oda, K. Akimoto, and T. Tomoda: Resour. Conserv. Recycl., 2013, vol. 81, pp. 81–91.

    Article  Google Scholar 

  4. K. Bellmann and A. Khare: Technovation, 2000, vol. 20, pp. 677–90.

    Article  Google Scholar 

  5. B. Lee and I. Sohn: JOM, 2014, vol. 66, pp. 1581–94.

    Article  CAS  Google Scholar 

  6. M. Kosaka and S. Minowa: Tetsu-to-Hagané, 1967, vol. 53, pp. 983–97.

    Article  CAS  Google Scholar 

  7. Y. U. Kim and R. Pehlke: Metall. Trans., 1974, vol. 5, pp. 2527–32.

    Article  CAS  Google Scholar 

  8. Y. K. Wu and M. Lacroix: Int. Comm. Heat Mass Transfer, 1995, vol. 22, pp. 517–25.

    Article  CAS  Google Scholar 

  9. K. Mori and T. Sakuraya: Transactions ISIJ, 1982, vol. 22, pp. 984–90.

    Article  CAS  Google Scholar 

  10. J. K. Wright: Metall. Mater. Trans. B, 1989, vol. 20B, pp. 363–74.

    Article  CAS  Google Scholar 

  11. J. Szekely, Y. K. Chuang, and J. W. Hlinka: Metall. Trans, 1972, vol. 3, pp. 2825–33.

    Article  CAS  Google Scholar 

  12. R. Boom and R. Steffen: Steel Res., 2001, vol. 72, pp. 91–6.

    Article  CAS  Google Scholar 

  13. N. Arzpeyma, O. Widlund, M. Ersson, and P. Jönsson: ISIJ Int, 2013, vol. 53, pp. 48–55.

    Article  CAS  Google Scholar 

  14. F. M. Penz, J. Schenk, R. Ammer, G. Klösch, and K. Pastucha: Metals, 2018, vol. 8, pp. 1078.

    Article  Google Scholar 

  15. Y. U. Kim and R. D. Pehlke: Metall. Trans. B, 1975, vol. 6, pp. 585–91.

    Article  Google Scholar 

  16. R. I. L. Guthrie and P. Stubbs: Can. Metall. Quart., 1973, vol. 12, pp. 465–73.

    Article  CAS  Google Scholar 

  17. K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito: Tetsu-to-Hagané, 1990, vol. 76, pp. 2033–40.

    Article  CAS  Google Scholar 

  18. M. Kawakami, K. Takatani, and L.C. Brabie: Tetsu-to-Hagané, 1999, vol. 85, pp. 658–65.

    Article  CAS  Google Scholar 

  19. J. H. Li, G. Brooks, and N. Provatas: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 293–302.

    Article  CAS  Google Scholar 

  20. J. H. Li and N. Provatas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 268–79.

    Article  CAS  Google Scholar 

  21. A. K. Shukla, B. Deo, and D. G. C. Robertson: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1407–27.

    Article  Google Scholar 

  22. A. Kruskopf: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1195–206.

    Article  Google Scholar 

  23. A. Kruskopf and L. Holappa: Metall. Res. Technol., 2018, vol. 115, pp. 201.

    Article  CAS  Google Scholar 

  24. M. Gao, S. F. Yang, and Y. L. Zhang: Ironmak. Steelmak., 2009, https://doi.org/10.1080/03019233.2019.1659003.

    Article  Google Scholar 

  25. L. C. Brabie and M. Kawakami: High Temp. Mater. Process, 2000, vol. 19, pp. 241–56.

    Article  CAS  Google Scholar 

  26. É.M. Goldfarb and B.I. Sherstov: J. Eng. Phys. Therm., 1970, vol. 18, pp. 342–7.

    Article  Google Scholar 

  27. F. M. Penz and J. Schenk: Steel Res. Int., 2019, vol. 90, pp. 1900124.

    Article  Google Scholar 

  28. M. Kosaka and S. Minowa: Tetsu-to-Hagané, 1967, vol. 53, pp. 1467–77.

    Article  CAS  Google Scholar 

  29. M. Hino and K. Ito: ‘Thermodynamic Data for Steelmaking’, 1st edn, 1–8; 2010, Sendai, Tohoku University Press.

  30. C. Bodsworth, I. M. Davidson, and D. Atkinson: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 1135–43.

    CAS  Google Scholar 

  31. A. M. Krishtal, Y. S. Sokolov, and A. A. Zhukov: Russ. J. Phys. Chem. A, 1971, vol. 45, pp. 1187.

    Google Scholar 

  32. C. Wagner: Thermodynamics of Alloys, 1st edn. Addison-Wesley, Boston, pp. 28–33, 1952

    Google Scholar 

  33. Y.H. Pei, Q.A. Chen, G.B. Tang, and Y. Peng: Iron and Steel, 2010, vol. 45, pp. 67–71.

    CAS  Google Scholar 

  34. F. Neumann and B. Person: Hart. Technol. Mitt., 1968, vol. 23, pp. 296–310.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support from the National Natural Science Foundation of China under Grant Nos. 51604201 and 51774217 and the International Postdoctoral Exchange Fellowship Program (2017) by the China Postdoctoral Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang or Qing Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 29, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, H., Fang, Q. et al. Effect of Silicon Concentration on Melting Behavior of Scraps in Hot Metal. Metall Mater Trans B 51, 1668–1678 (2020). https://doi.org/10.1007/s11663-020-01871-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01871-3

Navigation