Skip to main content
Log in

Compound collections at KU 1947–2017: cheminformatic analysis and computational protein target prediction

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

We report the comparison of two small-molecule collections synthesized at KU at two different eras. We used a machine learning tool to classify the compounds in these collections by their predicted protein targets. The analyses shine light on the evolution of medicinal chemistry research at the University of Kansas, and reveal several new associations between compounds and protein targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the analyses, codes to generate figures, and SMILES data for the compounds in these collections can be found at our laboratory’s GitHub page associated with this paper: https://github.com/boskovicgroup/ccaptp.

Notes

  1. https://www.cureffi.org/2013/10/04/list-of-fda-approved-drugs-and-cns-drugs-with-smiles/.

  2. Mathematical requirements for a space are clearly not satisfied: it is not possible to linearly combine the members of the set, and there is no neutral element of the set.

References

  • Altman R, Bosch B, Brune K, Patrignani P, Young C (2015) Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs 75(8):859–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertz SH (1981) The first general index of molecular complexity. J Am Chem Soc 103(12):3599–3601

    Article  CAS  Google Scholar 

  • Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, Müller S, Klebl B, Cotten M, Kéri G et al. (2005) Cellular targets of gefitinib. Cancer Res 65(2):379–382

    CAS  PubMed  Google Scholar 

  • Brown DG, Bostrom J (2016) Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? Miniperspective. J Med Chem 59(10):4443–4458

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Morinville A, Lee M-C, Vincent J-P, Collier B, Beaudet A (2001) Prolonged morphine treatment targets δ opioid receptors to neuronal plasma membranes and enhances δ-mediated antinociception. J Neurosci 21(19):7598–7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717

    Article  CAS  PubMed  Google Scholar 

  • Gerry CJ, Schreiber SL (2018) Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov 17(5):333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) Bindingdb in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  • Ho TK (1995) Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, vol 1. IEEE, Montreal, Quebec, Canada, pp 278–282

  • Huryn DM, Cosford ND (2007) The molecular libraries screening center network (mlscn): identifying chemical probes of biological systems. Annu Rep Med Chem 42:401–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karioti A, Carta F, Supuran CT (2016) Phenols and polyphenols as carbonic anhydrase inhibitors. Molecules 21(12):1649

    Article  CAS  PubMed Central  Google Scholar 

  • Kutchukian PS, Vasilyeva NY, Xu J, Lindvall MK, Dillon MP, Glick M, Coley JD, Brooijmans N (2012) Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery. PloS ONE 7(11):e48476. https://doi.org/10.1371/journal.pone.0048476

  • Landrum G et al. (2006) Rdkit: open-source cheminformatics

  • Lolli ML, Carnovale IM, Pippione AC, Wahlgren WY, Bonanni D, Marini E, Zonari D, Gallicchio M, Boscaro V, Goyal P et al. (2019) Bioisosteres of indomethacin as inhibitors of aldo-keto reductase 1c3. ACS Med Chem Lett 10(4):437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons E, Sheridan P, Tremmel G, Miyano S, Sugano S (2017) Large-scale dna barcode library generation for biomolecule identification in high-throughput screens. Sci Rep 7(1):1–7

    Article  CAS  Google Scholar 

  • Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9(5):580–588

    Article  CAS  PubMed  Google Scholar 

  • Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A (2015) Target prediction utilising negative bioactivity data covering large chemical space. J Cheminform 7(1):1–16

    Article  CAS  Google Scholar 

  • Paton WDM, Rang H (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc R Soc Lond Ser B Biol Sci 163(990):1–44

    Article  CAS  Google Scholar 

  • Reed M, Purohit A, Woo LL, Newman SP, Potter BV (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 26(2):171–202

    Article  CAS  PubMed  Google Scholar 

  • Riggs J, Seiwald R, Burckhalter J, Downs CM, Metcalf T (1958) Isothiocyanate compounds as fluorescent labeling agents for immune serum. Am J Pathol 34(6):1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 54(10):3451–3479

    Article  CAS  PubMed  Google Scholar 

  • Roy A (2014) High throughput screening operations at the University of Kansas. Comb Chem High Throughput Screen 17(4):387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenone M, Dančík V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9(4):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Walters WP, Green J, Weiss JR, Murcko MA (2011) What do medicinal chemists actually make? A 50-year retrospective. J Med Chem 54(19):6405–6416

    Article  CAS  PubMed  Google Scholar 

  • Wawer MJ, Li K, Gustafsdottir SM, Ljosa V, Bodycombe NE, Marton MA, Sokolnicki KL, Bray M-A, Kemp MM, Winchester E et al. (2014) Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc Natl Acad Sci USA 111(30):10911–10916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comp Sci 39(5):868–873

    Article  CAS  Google Scholar 

  • Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11(23–24):1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, Li J-y, Hu L-h, Li J (2006) Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1b, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim et Biophys Acta 1760(10):1505–1512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the Environmental Health and Safety team at KU, specifically Jon Rossillon and Jennifer Phillips, for their help with transporting the collection across the KU campus. New Faculty General Research Fund, General Research Fund, and Protein Structure–Function COBRE supported our projects around the small-molecule collections. Special thanks go to all the unnamed researchers who contributed compounds to the collections we have described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarko Boskovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Dedication: This paper honors Prof. Robert Hanzlik and his retirement following 49 years at the University of Kansas.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, Z., Singh, M. & Boskovic, Z. Compound collections at KU 1947–2017: cheminformatic analysis and computational protein target prediction. Med Chem Res 29, 1211–1222 (2020). https://doi.org/10.1007/s00044-020-02571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02571-y

Keywords

Navigation