Skip to main content
Log in

The Dynamic Models, Control Strategies and Applications for Magnetorheological Damping Systems: A Systematic Review

  • Review
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The magnetorheological (MR) damping devices have attracted an increasing amount of attention in the field of vibration control for their excellent performance of the vibration absorption. Systematically, the constitutive mechanical models of the MR fluids affect the control accuracy for the control strategies and the applications of the MR dampers.

Methods

This work elaborately gives a systematic review on the control issues with the MR devices, thus, covering the dynamic models of the MR dampers, the state-of-the-art research, and the damping control strategies and its applications, which provide the necessary fundamental theories and the references for the damping control design of an MR damping device.

Results

According to the advanced degree of the control algorithms that are discussed in detail, they can be classified into three categories, namely, the classical control algorithms, the advanced control algorithms, and the intelligent control algorithms. The damping control strategies determine the control quality, which is the soul of an MR damping control system. There is still room to improve the algorithm for the controller for MR dampers.

Conclusions

Employing the smart algorithms of machine learning, the work directs much more attention to the foundational research on the application of the artificial intelligence algorithms in damping control, outlining a perspective to combine the advantages of the individual different intelligent algorithms that could be an alternative solution to control of an MR damping device for the complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Phillips RW (1969) Engineering applications of fluids with a variable yield stress. Ph.D. Thesis, University of California, Berkeley

  2. Jolly MR, Bender JW, Carlson JD (1999) Properties and applications of commercial magnetorheological fluids. J Intell Mater Syst Struct 10:5–13. https://doi.org/10.1177/1045389X9901000102

    Article  Google Scholar 

  3. Guneyisi E, Gesoglu M, Naji N, Ipek S (2016) Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Arch Civil Mech Eng 16:9–19. https://doi.org/10.1016/j.acme.2015.09.003

    Article  Google Scholar 

  4. Bitman L, Choi YT, Wereley NM (2002) Electrorheological damper analysis using an Eyring constitutive relationship. J Intell Mater Syst Struct 13:633–639. https://doi.org/10.1177/104538902030345

    Article  Google Scholar 

  5. Liao C, Yu M, Chen W, Zhang H, Huang S (2005) Study on design theory for magneto-rheological fluid damper using Eyring constitutive relationship and experimental test. Chin J Mech Eng 41:132–136 (In Chinese)

    Article  Google Scholar 

  6. Stanway R, Sproston JL, Stevens NG (1987) Non-linear modeling of an electro-rheological vibration damper. J Electrost 20:167–184. https://doi.org/10.1016/0304-3886(87)90056-8

    Article  Google Scholar 

  7. Gabriel C, Laun HM (2009) Combined slit and plate–plate magnetorheometry of a magnetorheological fluid (MRF) and parameterization using the Casson model. Rheol Acta 48:755–768. https://doi.org/10.1007/s00397-009-0369-5

    Article  Google Scholar 

  8. Hayat T, Shehzad SA, Alsaedi A (2012) Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Appl Mathe Mech (English Edition) 33:1301–1312. https://doi.org/10.1007/s10483-012-1623-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang X, Gordaninejad F (1999) Flow analysis of field-controllable, electro- and magneto-rheological fluids using Herschel–Bulkley model. J Intell Mater Syst Struct 10:601–608. https://doi.org/10.1106/P4FL-LIEL-YFLJ-BTRE

    Article  Google Scholar 

  10. Wereley NM (2007) Nondimensional Herschel—Bulkley analysis of magnetorheological and electrorheological dampers. J Intell Mater Syst Struct 19:257–268. https://doi.org/10.1177/1045389x07088107

    Article  Google Scholar 

  11. Spencer BF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech ASCE 123:230–238. https://doi.org/10.1061/(asce)0733-9399(1997)123:3(230)

    Article  Google Scholar 

  12. Shu G, Li Z (2017) Parametric identification of the Bouc–Wen model by a modified genetic algorithm: application to evaluation of metallic dampers. Earthq Struct 13:397–407

    Google Scholar 

  13. Lv H, Chen R, Zhang S (2018) Comparative experimental study on constitutive mechanical models of magnetorheological fluids. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aae5e6

    Article  Google Scholar 

  14. Rabinow J (1949) Magnetic-fluid control devices. Paper presented at the SAE National Transportation Meeting, March 28, 1949—March 30, 1949, Cleveland, OH, United States

  15. Wu J-B, Wen W-J (2016) Research progress of field-induced soft smart materials. Acta Phys Sinica 65:188301. https://doi.org/10.7498/aps.65.188301 (In Chinese)

    Article  Google Scholar 

  16. Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569. https://doi.org/10.1016/s0957-4158(99)00064-1

    Article  Google Scholar 

  17. Kolekar S, Venkatesh K, Oh J-S, Choi S-B (2019) Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: a review. J Vib Eng Technol 7:359–377. https://doi.org/10.1007/s42417-019-00120-5

    Article  Google Scholar 

  18. Ahamed R, Ferdaus MM, Li Y (2016) Advancement in energy harvesting magneto-rheological fluid damper: a review. Korea–Australia Rheol J 28:355–379. https://doi.org/10.1007/s13367-016-0035-2

    Article  Google Scholar 

  19. Huang H (2003) Magnetorheological technology and its application in mechanical engineering. Manuf Technol Mach Tool 4:24–26 (In Chinese)

    Google Scholar 

  20. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matt 7:3701–3710. https://doi.org/10.1039/c0sm01221a

    Article  Google Scholar 

  21. Zhou Q, Qu W (2002) Two mechanic models for magnetorheological damper and corresponding test verification. Earthq Eng Eng Vib 22:144–150 (In Chinese)

    Google Scholar 

  22. Gandhi F, Bullough WA (2005) On the phenomenological modeling of electrorheological and magnetorheological fluid preyield behavior. J Intell Mater Syst Struct 16:237–248. https://doi.org/10.1177/1045389x05049649

    Article  Google Scholar 

  23. Li P, Kamath G, Wereley N (1998) Analysis and testing of a linear stroke magnetorheological damper. In: 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 1998. Proceedings 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum—Part 4. pp 2841–2856. doi: 10.2514/6.1998–2040

  24. Sarigul-Klijn N, Lopez I, Sarigul-Klijn M, Karnopp D (2007) Vibration mitigation using passive active tunable (PAT) system: experimental aspects. J Vib Acoust Trans Asme 129:209–216. https://doi.org/10.1115/1.2424977

    Article  Google Scholar 

  25. Wang DH, Liao WH (2011) Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct 20:023001. https://doi.org/10.1088/0964-1726/20/2/023001

    Article  Google Scholar 

  26. Kwok NM, Ha QP, Nguyen TH, Li J, Samali B (2006) A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens Actuators A Phys 132:441–451. https://doi.org/10.1016/j.sna.2006.03.015

    Article  Google Scholar 

  27. Talebian S, Hojjat Y, Ghodsi M, Karafi MR, Mirzamohammadi S (2015) A combined preisach-hyperbolic tangent model for magnetic hysteresis of terfenol-D. J Magn Magn Mater 396:38–47. https://doi.org/10.1016/j.jmmm.2015.08.006

    Article  Google Scholar 

  28. Xu Q, Chen J, Liu X, Li J, Yuan C (2016) An ABC-BP-ANN algorithm for semi-active control for Magnetorheological damper. KSCE J Civ Eng 21:2310–2321. https://doi.org/10.1007/s12205-016-0680-5

    Article  Google Scholar 

  29. Ekkachai K, Tungpimolrut K, Nilkhamhang I (2012) A novel approach to model magneto-rheological dampers using EHM with a feed-forward neural network. ScienceAsia. https://doi.org/10.2306/scienceasia1513-1874.2012.38.386

    Article  Google Scholar 

  30. Fu J, Liao G, Yu M, Li P, Lai J (2016) NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater Struct 25:125019. https://doi.org/10.1088/0964-1726/25/12/125019

    Article  Google Scholar 

  31. Tudón-Martínez JC, Lozoya-Santos JJ, Morales-Menendez R, Ramirez-Mendoza RA (2012) An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers. Smart Mater Struct 21:085007. https://doi.org/10.1088/0964-1726/21/8/085007

    Article  Google Scholar 

  32. Li X, Li H (2004) Progress of studies on control strategies of magnetorheological dampers for structures. J Disaster Prev Mitig Eng 24:335–342. https://doi.org/10.13409/j.cnki.jdpme.2004.03.021 (In Chinese)

    Article  Google Scholar 

  33. Karnopp D, Crosby MJ, Harwood RA (1974) Vibration control using semi-active force generators. 96 Ser B:619–626

  34. Savaresi SM, Spelta C (2007) Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension. J Dyn Syst Meas Control Trans Asme 129:382–392. https://doi.org/10.1115/1.2745846

    Article  Google Scholar 

  35. Zhang L, Zhang J, Peng Z, Bi Z, Huang D (2015) Improved Sky-Hook damping control algorithm for semi-active vehicle suspensions. Automot Eng 37:931–935 (In Chinese)

    Google Scholar 

  36. Li Z, Jiang N, Xu L, Zhou Y (2004) Shaking table test and analysis of model structure installed magnetorheological damper under different control strategies. J Build Struct 25:15–21. https://doi.org/10.14006/j.jzjgxb.2004.06.003 (In Chinese)

    Article  Google Scholar 

  37. Dyke SJ, Spencer BF, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5:565–575. https://doi.org/10.1088/0964-1726/5/5/006

    Article  Google Scholar 

  38. Kobori T, Kamagata S (1992) Active variable stiffness system—active seismic response control. In: The US–Italy–Japan Workshop/Symposium on Structural Control and Intelligent Systems, Sorrento, Italy (13–15 July) and Genoa, Italy (17 July), 1992. pp 140–153

  39. Sun H, Wang X, Chen Z (2012) Two-stage bi-state semi-active control with magnetorheological tuned liquid column damper. J Vib Shock 31:160–165. https://doi.org/10.13465/j.cnki.jvs.2012.09.033 (In Chinese)

    Article  Google Scholar 

  40. Xu Z, Shen Y (2003) Elastoplastic analysis for magnetorheological structure under bi-state control and tri-state control. J Xi'an Jiaotong Univ 37:754–758 (In Chinese)

    Google Scholar 

  41. Dyke SJ, Spencer BF (1997) A comparison of semi-active control strategies for the MR damper. Intell Inform Syst. https://doi.org/10.1109/iis.1997.645424

    Article  Google Scholar 

  42. Pohoryles DA, Duffour P (2013) Adaptive control of structures under dynamic excitation using magnetorheological dampers: an improved clipped-optimal control algorithm. J Vibrat Control 21:2569–2582. https://doi.org/10.1177/1077546313510543

    Article  Google Scholar 

  43. Yoshida O, Dyke SJ (2004) Seismic control of a nonlinear benchmark building using smart dampers. J Eng Mech 130:386–392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)

    Article  Google Scholar 

  44. Pohoryles DA, Duffour P (2015) Adaptive control of structures under dynamic excitation using magnetorheological dampers: an improved clipped-optimal control algorithm. J Vib Control 21:2569–2582. https://doi.org/10.1177/1077546313510543

    Article  Google Scholar 

  45. Sarrafan A, Hamid Zareh S, Khayyat AA, Zabihollah A (2011) Performance of an offshore platform with MR dampers subjected to wave. In: Gokasan M, Bogosyan S, Yesil E (eds) Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 2011. pp 242–247. doi: 10.1109/icmech.2011.5971289

  46. Ying ZG, Zhu WQ (2003) A stochastic optimal semi-active control strategy for ER/MR dampers. J Sound Vibrat 259:45–62. https://doi.org/10.1006/jsvi.2002.5136

    Article  MathSciNet  MATH  Google Scholar 

  47. Ren Q, Ying Z (2004) Stochastic optimal control force of hysteretic MR dampers. Noise Vib Control 24:9–11 (In Chinese)

    MathSciNet  Google Scholar 

  48. El-Sinawi AH, AlHamaydeh MH, Jhemi AA (2013) Optimal control of magnetorheological fluid dampers for seismic isolation of structures. Math Problems Eng. https://doi.org/10.1155/2013/251935

    Article  Google Scholar 

  49. Singh HJ, Wereley NM (2014) Optimal control of gun recoil in direct fire using magnetorheological absorbers. Smart Mater Struct 23:055009. https://doi.org/10.1088/0964-1726/23/5/055009

    Article  Google Scholar 

  50. Zhang WJ, Ouyang PR, Sun ZH A novel hybridization design principle for intelligent mechatronics systems. In: International conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics: ICAM, Osaka, Japan, 2010. vol 0. pp 67–74. doi:10.1299/jsmeicam.2010.5.67

  51. Cai M, Lin Y, Han B, Liu C, Zhang W (2016) On a simple and efficient approach to probability distribution function aggregation. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/tsmc.2016.2531647

    Article  Google Scholar 

  52. Wang J, Muddada RR, Wang H, Ding J, Lin Y, Liu C, Zhang W (2016) Toward a resilient holistic supply chain network system: concept, review and future direction. IEEE Syst J 10:410–421. https://doi.org/10.1109/jsyst.2014.2363161

    Article  Google Scholar 

  53. Zadeb LA (1969) Toward a theory of fuzzy systems. NASA Contractor Reports. The University of California, Berkeley, CA, Washington, DC

  54. Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Elect Eng 121:1585–1588. https://doi.org/10.1049/piee.1974.0328

    Article  Google Scholar 

  55. Choi KM, Cho SW, Jung HJ, Lee IW (2004) Semi-active fuzzy control for seismic response reduction using magnetorheological dampers. Earthq Eng Struct Dyn 33:723–736. https://doi.org/10.1002/eqe.372

    Article  Google Scholar 

  56. Xu Z-D, Guo Y-Q (2006) Fuzzy control method for earthquake mitigation structures with magnetorheological dampers. J Intell Mater Syst Struct 17:871–881. https://doi.org/10.1177/1045389x06061044

    Article  Google Scholar 

  57. Dias JM, Dourado A (1999) A self-organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor. Fuzzy Sets Syst 103:27–48. https://doi.org/10.1016/s0165-0114(97)00192-9

    Article  Google Scholar 

  58. Xu Z, Guo Y (2008) Neuro-fuzzy control strategy for earthquake-excited nonlinear magnetorheological structures. Soil Dyn Earthq Eng 28:717–727. https://doi.org/10.1016/j.soildyn.2007.10.013

    Article  Google Scholar 

  59. Holland JH (1962) Outline for a logical theory of adaptive systems. J ACM 9:297–314

    Article  Google Scholar 

  60. Liu J, Wei M, Shao J, Pan S (2008) A GA-based fuzzy controller for a magnetorheological damper. Mech Sci Technol 27:171–175 (In Chinese)

    Google Scholar 

  61. Hajiyan M, Mahmud S, Biglarbegian M, Abdullah HA (2016) A new design of magnetorheological fluid based braking system using genetic algorithm optimization. Int J Mech Mater Des 12:449–462. https://doi.org/10.1007/s10999-015-9322-1

    Article  Google Scholar 

  62. Liu L-Z, Wu F-X, Zhang W-J (2012) Reverse engineering of gene regulatory networks from biological data. Wiley Interdiscip Rev Data Min Knowl Discov 2:365–385. https://doi.org/10.1002/widm.1068

    Article  Google Scholar 

  63. Liu X, Ghorpade A, Tu YL, Zhang WJ (2012) A novel approach to probability distribution aggregation. Inf Sci 188:269–275. https://doi.org/10.1016/j.ins.2011.11.002

    Article  Google Scholar 

  64. Kristinsson K, Dumont GA (1992) System-identification and control using genetic algorithms. IEEE Trans Syst Man Cybern 22:1033–1046. https://doi.org/10.1109/21.179842

    Article  MATH  Google Scholar 

  65. Renders JM, Flasse SP (1996) Hybrid methods using genetic algorithms for global optimization. IEEE Trans Syst Man Cybern Part B Cybern 26:243–258. https://doi.org/10.1109/3477.485836

    Article  Google Scholar 

  66. Chaudhuri A, Wereley NM, Radhakrishnan R, Choi SB (2006) Rheological parameter estimation for a ferrous nanoparticle-based magnetorheological fluid using genetic algorithms. J Intell Mater Syst Struct 17:261–269. https://doi.org/10.1177/1045389x06063038

    Article  Google Scholar 

  67. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  68. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  69. Zheng L, Duan X, Deng Z, Li Y (2014) Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm. In: Liao WH (ed) Active and Passive Smart Structures and Integrated Systems 2014, vol 9057. Proceedings of SPIE. doi:10.1117/12.2044974

  70. Duan X, Li Y, Zheng L, Deng Z (2014) Multi-objective optimization for an MR engine mount based on NSGA-II algorithm. J Vib Shock 33(191–196):202 (In Chinese)

    Google Scholar 

  71. Ubaidillah PG, Nizam M, Yahya I (2014) Modeling of magnetorheological damper using back propagation neural network. Adv Mater Res 896:396–400. https://doi.org/10.4028/www.scientific.net/AMR.896.396

    Article  Google Scholar 

  72. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1:4–27. https://doi.org/10.1109/72.80202

    Article  Google Scholar 

  73. Xu ZD, Shen YP, Guo YQ (2003) Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Mater Struct 12:80–87. https://doi.org/10.1088/0964-1726/12/1/309

    Article  Google Scholar 

  74. Zhang WJ, van Luttervelt CA (2011) Toward a resilient manufacturing system. CIRP Ann 60:469–472. https://doi.org/10.1016/j.cirp.2011.03.041

    Article  Google Scholar 

  75. Mei Z, Chen J, Li J, Jia J (2011) BP neural network modeling of a magnetorheological damper. Innov Sustain Struct Vols 1 and 2.

  76. Tu J, Dai K, Qu W (2007) Magnetic hysteresis of magnetorheological dampers and its compensation by neural network prediction. J Huazhong Univ Sci Technol (Nat Sci Edition) 35:110–112. https://doi.org/10.13245/j.hust.2007.03.033 (In Chinese)

    Article  Google Scholar 

  77. Wang K, Zheng L, Liu F (2013) Model identification of MR damper based on generalized regression neural network. Automot Eng 35(619–623):634 (In Chinese)

    Google Scholar 

  78. Ma Y, Zhang F, Bade R, Daxibater A, Men Z, Hasi A (2015) Genome-wide identification and phylogenetic analysis of the ERF gene family in melon. J Plant Growth Regul 34:66–77. https://doi.org/10.1007/s00344-014-9443-z

    Article  Google Scholar 

  79. Ulyanov SV, Hagiwara T (2001) Optimization control method for shock absorber. US Patent 6212466B1, April 3, 2001

  80. Motra GB, Chandiramani NK (2017) Lateral-torsional response control of MR damper connected buildings. J Vib Eng Technol 5:177–190

    Google Scholar 

  81. Yu Y, Li Y, Li J (2015) Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm. J Intell Mater Syst Struct 26:1789–1798. https://doi.org/10.1177/1045389x15577649

    Article  Google Scholar 

  82. Deng Z, Zheng L, Guo M, Zhang Z (2014) Model identification of magneto-rheological mount based on genetic algorithms and BP neural network. J Univ Electron Sci Technol China 43:955–960. https://doi.org/10.3969/j.issn.1001-0548.2014.06.028(In Chinese)

    Article  Google Scholar 

  83. Lee SJ, Hou CL (2002) An ART-based construction of RBF networks. IEEE Trans Neural Netw 13:1308–1321. https://doi.org/10.1109/tnn.2002.804308

    Article  Google Scholar 

  84. Du H, Lam J, Zhang N (2006) Modelling of a magneto-rheological damper by evolving radial basis function networks. Eng Appl Artif Intell 19:869–881. https://doi.org/10.1016/j.engappai.2006.02.005

    Article  Google Scholar 

  85. Li G, Liu W, Gong D, Teng L, Wang J, Deng H (2001) Networks in simulation of ferromagnetic elements' major hysteresis curve. Power Syst Technol 25(18–21):25 (In Chinese)

    Google Scholar 

  86. Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2:568–576. https://doi.org/10.1109/72.97934

    Article  Google Scholar 

  87. Ming L, Hansheng Y, Chengwu Y (2006) An improved NARX recurrent neural network. Electr Autom 28(6–8):11

    Google Scholar 

  88. Lin TN, Horne BG, Tino P, Giles CL (1996) Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans Neural Netw 7:1329–1338. https://doi.org/10.1109/72.548162

    Article  Google Scholar 

  89. Yu M, Choi SB, Dong XM, Liao CR (2009) Fuzzy neural network control for vehicle stability utilizing magnetorheological suspension system. J Intell Mater Syst Struct 20:457–466. https://doi.org/10.1177/1045389x08091972

    Article  Google Scholar 

  90. Carlson JD, Chrzan MJ (1992) Magnetorheological fluid dampers. US Patent US5277281A, Jan. 11, 1994

  91. Carlson JD, Chrzan MJ, James FO (1992) Magnetorheological fluid devices. US5284330A, Feb. 8, 1994

  92. Dong X, Yu M, Chen W, Liao C, Huang S, Li Z (2007) Research on application of human-like intelligent control used to vehicle magneto-rheological semiactive suspension. China Mech Eng 18:764–769 (In Chinese)

    Google Scholar 

  93. Moghani M, Kermani MR (2016) Design and development of a hybrid magneto-rheological clutch for safe robotic applications. Paper presented at the 2016 IEEE International Conference on Robotics and Automation,

  94. Symans MD, Constantinou MC (1999) Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng Struct 21:469–487. https://doi.org/10.1016/s0141-0296(97)00225-3

    Article  Google Scholar 

  95. Weber F, Distl H (2015) Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers. Struct Contr Health Monit 22:237–254. https://doi.org/10.1002/stc.1671

    Article  Google Scholar 

  96. Nandy A, Mondal S, Chakraborty P, Nandi GC (2012) Development of a Robust Microcontroller Based Intelligent Prosthetic Limb. Paper presented at the 5th International Conference on Contemporary Computing, IC3 2012, Noida, India,

  97. Chen JZ, Liao WH (2010) Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater Struct 19:035029. https://doi.org/10.1088/0964-1726/19/3/035029

    Article  Google Scholar 

  98. Ma H, Chen B, Qin L, Liao W-H (2017) Design and testing of a regenerative magnetorheological actuator for assistive knee braces. Smart Mater Struct 26:035013. https://doi.org/10.1088/1361-665X/aa57c5

    Article  Google Scholar 

  99. Fu Q, Wang D, Xu L, Yuan G (2017) A magnetorheological damper-based prosthetic knee (MRPK) and sliding mode tracking control method for an MRPK-based lower limb prosthesis. Smart Mater Struct 26:045030. https://doi.org/10.1088/1361-665X/aa61f1

    Article  Google Scholar 

  100. Herr H, Wilkenfeld A (2003) User-adaptive control of a magnetorheological prosthetic knee. Ind Robot 30:42–55. https://doi.org/10.1108/01439910310457706

    Article  Google Scholar 

  101. Xie HL, Liu ZB, Yang JY, Sheng ZQ, Xu ZW (2016) Modelling of magnetorheological damper for intelligent bionic leg and simulation of knee joint movement control. Int J Simul Model 15:144–156. https://doi.org/10.2507/ijsimm15(1)co2

    Article  Google Scholar 

  102. Yilmaz A, Sadeghimorad A, Sahin I, Evren Kaya Z (2014) Analysis of the performance of controlled semi-active knee joint with magnetorheological (MR) damper. Paper presented at the 2014 18th National Biomedical Engineering Meeting,

  103. Valencia CH, Vellasco M, Tanscheit R, Figueiredo KT (2015) Magnetorheological Damper Control in a Leg Prosthesis Mechanical. Paper presented at the Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing,

  104. Xie H-L, He N, Li F, Yang J-Y (2015) The bionic design and system identification of intelligent bionic leg with magneto-rheological damper. Tehnicki Vjesnik-Technical Gazette 22:1093–1098. https://doi.org/10.17559/tv-20150731100315

    Article  Google Scholar 

  105. Zhang WJ, Li Q, Guo LS (1999) Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage. IEEE/ASME Trans Mechatron 4:354–362. https://doi.org/10.1109/3516.809514

    Article  Google Scholar 

  106. Li Q, Zhang WJ, Chen L (2001) Design for control-A concurrent engineering approach for mechatronic systems design. IEEE/ASME Trans Mechatron 6:161–169. https://doi.org/10.1109/3516.928731

    Article  Google Scholar 

  107. De Silva CR, Ranganath S, De Silva LC (2008) Cloud basis function neural network: a modified RBF network architecture for holistic facial expression recognition. Pattern Recogn 41:1241–1253. https://doi.org/10.1016/j.patcog.2007.09.015

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 51305435) and the Fundamental Research Funds for the Central Universities (Grant No. 2232018G-05). We would like to thank Professor Ying Liu at Cardiff University for his sincere advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhan Lv.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Zhang, S., Sun, Q. et al. The Dynamic Models, Control Strategies and Applications for Magnetorheological Damping Systems: A Systematic Review. J. Vib. Eng. Technol. 9, 131–147 (2021). https://doi.org/10.1007/s42417-020-00215-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00215-4

Keywords

Navigation