Skip to main content
Log in

Effect of Transition Metal Ion Doping on the Microstructure, Defect Evolution, and Magnetic and Magnetocaloric Properties of CuFeO2 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The polycrystalline CuFeO2 (CFO) and CuFe1-xMxO2 (M = Ti, Hf, Zr, M-CFO) samples are synthesized by solid-state reaction method. The doping effect of tetravalent nonmagnetic transition metal M4+ ions on the microstructure, defect evolution, and magnetic and magnetocaloric properties of the CFO system are comparatively investigated. The substitution of M4+ for Fe3+ increases lattice parameters, changes the bond length of Fe/Cu-O and bond angle of Fe-O-Fe, and improves the microstructure to some extent. Positron annihilation spectroscopy results indicate that M4+ doping induces the agglomeration of small-sized vacancy defects manifested as the increase in vacancy-type defect size and the suppression of inherent defect concentration. Magnetic measurements show that the antiferromagnetic stability of CFO system is clearly affected by M4+ doping, and Ti4+ doping has a more noticeable impact than Hf4+ and Zr4+ doping. Meanwhile, the coexistence of weak ferromagnetism and antiferromagnetism is detected in all doped samples, while Ti-doped system exhibits extraordinary magnetic properties. Especially for Ti-CFO2 (x = 0.03) sample, the maximum magnetization reaches as high as 11.81 emu/g at 0.5 T, which enhanced one order of magnitude than that of undoped CFO. Isothermal M-H data at different temperatures show that entropy change (ΔSM) and refrigerant capacity (RC) for CFO and M-CFO2 samples are significantly weakening with M4+ substitution in bulk CFO. The maximum ΔSM = 4.79 J·kg−1 K−1 and RC = 12.79 J·kg−1 for undoped CFO are obtained near the transition temperature TN2 = 12 K, with the applied fields up to 6 T. The possible reasons for the above observations are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature. 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  2. Ramirez, A.P.: Strongly geometrically frustrated magnets. Annu. Rev. Mater. Res. 24, 453–480 (2003)

    Article  ADS  Google Scholar 

  3. Bonville, P., Hodges, J.A., Ocio, M., Sanchez, J.P., Vulliet, P., Sosin, S., Braithwaite, D.: Low temperature magnetic properties of geometrically frustrated Gd2Sn2O7 and Gd2Ti2O7. J. Phys. Condens. Matter. 15, 7777–7787 (2003)

    Article  ADS  Google Scholar 

  4. Yaouanc, A., Dalmas de Réotier, P., Glazkov, V., et al.: Magnetic Density of States at Low Energy in Geometrically Frustrated Systems. Phys. Rev. Lett. 95, 047203–1–047203-4 (2005)

    Article  Google Scholar 

  5. Mugnier, E., Barnabé, A., Tailhades, P.: Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics. 177, 607–612 (2006)

    Article  Google Scholar 

  6. Shannon, R.D., Rogers, D.B., Prewitt, C.T.: Chemistry of noble metal oxides I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem. 10, 713–718 (1971)

    Article  Google Scholar 

  7. Sobolev, A., Rusakov, V., Moskvin, A., et al.: 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2. J. Phys. Condens. Matter. 29, 275803 (2017)

    Article  Google Scholar 

  8. Albaalbaky, A., Kvashnin, Y., Ledue, D., Patte, R., Frésard, R.: Magnetoelectric properties of multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations. Phys. Rev. B. 96, 064431–1–064431-6 (2017)

    Article  Google Scholar 

  9. Whangbo, M.H., Dai, D., Lee, K.S., Kremer, R.K.: On the conflicting pictures of magnetism for the frustrated triangular lattice antiferromagnet CuFeO2. Chem. Mater. 18, 1268–1274 (2006)

    Article  Google Scholar 

  10. Apostolov, A.T., Apostolova, I.N., Wesselinowa, J.M.: Ferroelectricity in the multiferroic delafossite CuFeO2 induced by ion doping or magnetic field. Solid State Commun. 292, 11–16 (2019)

    Article  ADS  Google Scholar 

  11. Hayashi, K., Fukatsu, R., Nozaki, T., Miyazaki, Y., Kajitani, T.: Structural, magnetic, and ferroelectric properties of CuFe1−xMnxO2. Phys. Rev. B. 87, 064418–1–064418-5 (2013)

    Google Scholar 

  12. Elkhoun, T., Amami, M., Hlil, E.K., Ben Salah, A.: Effect of spin dilution on the magnetic state of delafossite CuFeO2 with an S=5/2 antiferromagnetic triangular sublattice. J. Supercond. Nov. Magn. 28, 1439–1447 (2015)

    Article  Google Scholar 

  13. Wang, J.Y., Deng, Q.L., Li, M.J., Jiang, K., Zhang, J.Z., Hu, Z.G.: Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. Sci. Rep. 7, 8903 (2017)

    Article  ADS  Google Scholar 

  14. Gupta, R.K., Cavas, M., Al-Ghamdi, A.A., Gafer, Z.H., El-Tantawy, F., Yakuphanoglu, F.: Electrical and photoresponse properties of Al/p-CuFeO2/p-Si/Al MTCOS photodiode. Sol. Energy. 92, 1–6 (2013)

    Article  ADS  Google Scholar 

  15. Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622–636 (2003)

    Article  Google Scholar 

  16. Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magneto-electric effect in non-collinear magnets. Phys. Rev. Lett. 95, 057205–1–057205-4 (2005)

    Article  Google Scholar 

  17. Terada, N., Mitsuda, S., Suzuki, S., Kawasaki, T., Fukuda, M., Nagao, T., Katori, H.A.: Disappearance of quasi-Ising character in triangular lattice antiferromagnet CuFeO2 by a small amount of substitution. J. Phys. Soc. Jpn. 73, 1442–1445 (2004)

    Article  ADS  Google Scholar 

  18. Terada, N., Mitsuda, S., Gukasov, A.: Impurity-induced orthogonal double sinusoidal magnetic structure in the triangular lattice antiferromagnet CuFe1-xAlxO2. Phys. Rev. B. 73, 014419–1–014419-8 (2006)

    Article  Google Scholar 

  19. Seki, S., Yamasaki, Y., Shiomi, Y., Iguchi, S., Onose, Y., Tokura, Y.: Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet. Phys. Rev. B. 75, 100403–1–100403-4 (2007)

    Article  Google Scholar 

  20. Terada, N., Nakajima, T., Mitsuda, S., Kitazawa, H., Kaneko, K., Metoki, N.: Ga-substitution-induced single ferroelectric phase in multiferroic CuFeO2. Phys. Rev. B. 78, 014101–1–014101-6 (2008)

    Article  Google Scholar 

  21. Naka-in, L., Kamwanna, T., Srepusharawoot, P., Pinitsoontorn, S., Amornkitbamrung, V.: Effects of Ge substitution on the structural and physical properties of CuFeO2 delafossite oxide. Jpn. J. Appl. Phys. 54, 04DH10–1–04DH10–5 (2015)

    Article  Google Scholar 

  22. Zhang, L., Goodman, B.A., Xiong, D.K., Deng, W.: Evolution of microstructure, optical, and magnetic properties in multiferroic CuFe1-xSnxO2 (x=0–0.05). Ceram. Int. 45, 3007–3012 (2019)

    Article  Google Scholar 

  23. Dai, H.Y., Gu, L.T., Li, T., Liu, D.W., Chen, Z.P., Cao, X.Z., Wang, B.Y.: Investigations of Ti-substituted CuFeO2 ceramics on the structure, defects, the local electron density and magnetic properties. J. Magn. Magn. Mater. 484, 279–285 (2019)

    Article  ADS  Google Scholar 

  24. Sedivy, L., Cizek, J., Belas, E., Grill, R., Melikhova, O.: Positron annihilation spectroscopy of vacancy-related defects in CdTe:cl and CdZnTe:Ge at different stoichiometry deviations. Sci. Rep. 6, 20641 (2016)

    Article  ADS  Google Scholar 

  25. Ishibashit, S., Suenagatll, K., Yamamotot, R., Doyama, M., Matsumoto, T.: Positron annihilation studies of the iron-substituted oxide superconductor YBa2(Cu1-xFex)3O7-y. J. Phys. Condens. Matter. 2, 3691–3696 (1990)

    Article  ADS  Google Scholar 

  26. Dai, H.Y., Xie, X.Y., Chen, Z.P., Ye, F.J., Li, T., Yang, Y.: Microstructure evolution and magnetic properties of Eu doped CuFeO2 multiferroic ceramics studied by positron annihilation. Ceram. Int. 44, 13894–13900 (2018)

    Article  Google Scholar 

  27. Nisiro, D., Fabbri, G., Celotti, G.C., Bellosi, A.: Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics. J. Mater. Sci. 38, 2727–2742 (2003)

    Article  ADS  Google Scholar 

  28. Dai, H.Y., Li, T., Chen, Z.P., Liu, D.W., Xue, R.Z., Zhao, C.Z., Liu, H.Z., Huang, N.K.: Studies on the structural, electrical and magnetic properties of Ce-doped BiFeO3 ceramics. J. Alloys Compd. 672, 182–189 (2016)

    Article  Google Scholar 

  29. Terada, N., Nakajima, T., Mitsuda, S., Kitazawa, H.: Magnetic phase diagram of multiferroic delafossite CuFe1−yGayO2. J. Phys. Conf. Ser. 145, 012071 (2009)

    Article  Google Scholar 

  30. Zhang, L., Goodman, B.A., Xiong, D.K., Deng, W.: Magnetic transitions in delafossite CuFeO2: a magnetocaloric effect study. Phys. Lett. A. 383, 125834 (2019)

    Article  Google Scholar 

  31. Oliveira, G.N.P., Machado, P., Pires, A.L., Pereira, A.M., Araújo, J.P., Lopes, A.M.L.: Magnetocaloric effect and refrigerant capacity in polycrystalline YCrO3. J. Phys. Chem. Solids. 91, 182–188 (2016)

    Article  ADS  Google Scholar 

  32. Das, K.: Magnetocaloric effect at low temperature in robust charge ordered Sm1-xCaxMnO3 compounds. J. Magn. Magn. Mater. 458, 52–56 (2018)

    Article  ADS  Google Scholar 

  33. Shi, J.H., Yin, S.Q., Seehra, M.S., Jain, M.: Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution. J. Appl. Phys. 123, 193901–1–193901-9 (2018)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Project Nos. 11675149, 11775192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Dai, H., Li, T. et al. Effect of Transition Metal Ion Doping on the Microstructure, Defect Evolution, and Magnetic and Magnetocaloric Properties of CuFeO2 Ceramics. J Supercond Nov Magn 33, 2881–2890 (2020). https://doi.org/10.1007/s10948-020-05550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05550-x

Keywords

Navigation