Skip to main content
Log in

Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-rich layered oxides are the most promising cathode candidate for lithium ion batteries with high specific energy. In this work, Li1.13Mn0.47Ni0.2Co0.2O2-coated Li [Li0.2Mn0.52Ni0.13Co0.13 V0.02]O2 cathode materials were synthesized via a sol–gel method, and their electrochemical performance was evaluated. Structural and morphological characterizations of the materials demonstrate that Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 particles are covered by Li1.13Mn0.47Ni0.2Co0.2O2 particles. Moreover, the Li1.13Mn0.47Ni0.2Co0.2O2 coating has no obvious effect on the crystal structure of Li-rich materials. The specific capacity, cycle performance, and rate capability of Li-rich materials are significantly improved with the coating of Li1.13Mn0.47Ni0.2Co0.2O2. Materials coated with 1 wt% to 3 wt% Li1.13Mn0.47Ni0.2Co0.2O2 exhibit the highest capacity retention of 93% after 100 cycles at 1 C, which is 10% higher than that of the uncoated one. The specific capacity of 3 wt% Li1.13Mn0.47Ni0.2Co0.2O2-coated material is 115.9 mAh g−1 at 5 C, and that of the blank sample is 89.8 mAh g−1 under the same condition. The cyclic voltammetry and electrochemical impedance spectra reveal that the enhanced cycle performance and rate capability of the surface-modified Li-rich materials are due to the presence of the Li1.13Mn0.47Ni0.2Co0.2O2 coating layer, which restrains structural transformation with cycling and decreases the charge-transfer resistance of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  2. Zuo XX, Fan CJ, Xiao X, Liu JS, Nan JM (2012) High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive. J Power Sources 219:94–99

    Article  CAS  Google Scholar 

  3. Min K, Seo SW, Song YY, Lee HS, Cho E (2017) A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys Chem Chem Phys 3:1762–1769

    Article  Google Scholar 

  4. Hu M, Pang XL, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242

    Article  CAS  Google Scholar 

  5. Xi YK, Liu Y, Zhang DK, Jin SL, Zhang R, Jin ML (2018) Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries. Solid State Ionics 327:27–31

    Article  CAS  Google Scholar 

  6. Huang MX, Sun YH, Guan DC, Nan JM, Cai YP (2019) Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries. Ionics 25(12):5745–5757

    Article  CAS  Google Scholar 

  7. Bian M, Yang Y, Tian L (2018) Carbon-free Li4Ti5O12 porous nanofibers as high-rate and ultralong-life anode materials for lithium-ion batteries. J Phys Chem Solids 113:11–16

    Article  CAS  Google Scholar 

  8. Zhang HZ, Zhang YT, Song DW, Shi XX, Zhang LQ, Bie LJ (2017) Tailoring the (Ni1/6Co1/6Mn4/6)CO3 precursors of Li-rich layered oxides for advanced lithium-ion batteries with the seed-mediated method. J Alloys Compd 709:692–699

    Article  CAS  Google Scholar 

  9. Sun G, Jia CX, Zhang JN, Hou LY, Ma ZP, Shao GJ, Wang ZB (2019) Core-shell structure LiNi1/3Mn1/3Co1/3O2@ ultrathin delta-MnO2 nanoflakes cathode material with high electrochemical performance for lithium-ion batteries. Ionics 25(11):5249–5258

    Article  CAS  Google Scholar 

  10. Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6:1501010–1501032

    Article  Google Scholar 

  11. Zhang LS, Zhao ZJ, Cao Y, Wang LZ, Fang H, Gao KZ, Zhang AQ, Gao HL, Song YH (2019) In situ synthesis of porous LiNi0.5Co0.2Mn0.3O2 tubular-fiber as high-performance cathode materials for Li-ion batteries. Ionics 25(11):5229–5237

    Article  CAS  Google Scholar 

  12. Zhao TL, Gao XY, Wei ZJ, Guo KJ, Wu F, Li L, Chen RJ (2018) Three-dimensional Li1.2Ni0.2Mn0.6O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. J Alloys Compd 757:16–23

    Article  CAS  Google Scholar 

  13. Xu CS, Yu HT, Guo CF, Xie Y, Ren N, Yi TF, Zhang GX (2019) Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 25(10):4567–4576

    Article  CAS  Google Scholar 

  14. Wang LZ, Yang W, Lv TF, Gao KZ, Yan J (2019) Adorned Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 with LiAlO2 for improved electrochemical properties in lithium-ion batteries. Ionics 25(12):5681–5688

    Article  CAS  Google Scholar 

  15. Ma J, Li B, An L, Wei H, Wang XY, Yu PR, Xia DG (2015) A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion. J Power Sources 277:393–402

    Article  CAS  Google Scholar 

  16. Chong SK, Chen YZ, Yan WW, Guo SW, Tan Q, Wu YF, Jiang T, Liu YN (2016) Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources 332:230–239

    Article  CAS  Google Scholar 

  17. Song JH, Shim JH, Kapylou A, Yeon DH, Lee DH, Kim DH, Park JH, Kang SH (2016) Suppression of voltage depression in Li-rich layered oxide by introducing GaO4 structural units in the Li2MnO3-like nano-domain. Nano Energy 30:717–727

    Article  CAS  Google Scholar 

  18. Li JG, Li JL, Yu TH, Ding FX, Xu GF, Li ZY, Zhao YG, Kang FY (2016) Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional proxide surface modification. Ceram Int 42:18620–18630

    Article  CAS  Google Scholar 

  19. Xie YX, Chen SZ, Yang W, Zou HB, Lin ZY, Zhou JC (2018) Improving the rate capability and decelerating the voltage decay of Li-rich layered oxide cathodes by constructing a surface-modified microrod structure. J Alloys Compd 772:230–239

    Article  Google Scholar 

  20. Su N, Lyu YC, Gu R, Guo BK (2018) Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J Alloys Compd 741:398–403

    Article  CAS  Google Scholar 

  21. Rastgoo-Deylami M, Javanbakht M, Omidvar H (2019) Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2. Solid State Ionics 331:74–88

    Article  CAS  Google Scholar 

  22. Zheng FH, Ou X, Pan QC, Xiong XH, Yang CH, Liu ML (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J Power Sources 346:31–39

    Article  CAS  Google Scholar 

  23. Jo CH, Cho DH, Noh HJ, Yashiro H, Sun YK, Myung ST (2015) An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res 8:1464–1479

    Article  CAS  Google Scholar 

  24. Yuan B, Liao SX, Xin Y, Zhong YJ, Shi XX, Li LY, Guo XD (2015) Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries. RSC Adv 5:2947–2951

    Article  CAS  Google Scholar 

  25. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7:13014–13021

    Article  CAS  Google Scholar 

  26. Yu RZ, Wang XY, Fu YQ, Wang LW, Cai SY, Liu MH, Lu B, Wang G, Wang D, Ren QF, Yang XK (2016) Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J Mater Chem A 4:4941–4951

    Article  CAS  Google Scholar 

  27. Guo B, Zhao JH, Fan XM, Zhang W, Li S, Yang ZH, Chen ZX, Zhang WX (2017) Aluminum and fluorine Co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochim Acta 236:171–179

    Article  CAS  Google Scholar 

  28. Zhao TL, Li L, Chen RJ, Wu HM, Zhang XX, Chen S, Xie M, Wu F, Lu J, Amine K (2015) Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15:164–176

    Article  CAS  Google Scholar 

  29. Li CD, Xu J, Xia JS, Liu W, Xiong X, Zheng ZA (2016) Influences of FeF3 coating layer on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Solid State Ionics 292:75–82

    Article  CAS  Google Scholar 

  30. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Tang YY, Wang XL (2012) Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta 83:105–112

    Article  CAS  Google Scholar 

  31. Cho SW, Kim GO, Ryu KS (2012) Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics 206:84–90

    Article  CAS  Google Scholar 

  32. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207

    Article  CAS  Google Scholar 

  33. Lu C, Wu H, Zhang Y, Liu H, Chen BJ, Wu NT, Wang S (2014) Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691

    Article  CAS  Google Scholar 

  34. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  35. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Laboratory Foundation of China (Grant No. 6142808020117C01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Sun, Y., Song, K. et al. Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating. Ionics 26, 4455–4462 (2020). https://doi.org/10.1007/s11581-020-03621-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03621-6

Keywords

Navigation