Skip to main content
Log in

A dielectric elastomer membrane integrated with protective passive layers under explicit and implicit prestretch

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Dielectric elastomers (DEs) are a category of soft electro-active materials that can be used as sensors, actuators and generators. In order to provide protection, insulation layers are essential and thicker layers can lead to stronger protecion. However, the presence of the additional layers can certainly constrain the deformation of DEs. Thus a balance between protection and performance is needed. Prestretch is widely used for the enhancement of actuation performance. Thus the DE membrane integrated with protective passive layers is studied here, focusing on the effect of the coexistence of the prestretch and passive layers. We identify two approaches of prestretches, where the DE membrane and protective passive layers can be explicitly prestretched by external loads, or the DE membrane can be implicitly prestretched by solely protective passive layers. For the latter approach, it does not require additional components such as rigid clamps or dead weights. We then establish a coupled model for the DE membrane and passive layers. The effects of the prestretches and passive layers on the electromechanical behavior and voltage-induced deformation of the DE membrane are then revealed numerically. Furthermore, we theoretically study the detailed effects of specific mechanical properties of passive layers such as the thickness and shear modulus, which are useful for the design of the system. This theoretical research thus sheds insights for the design of dielectric elastomer applications where both safety and performance are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An, S.Q., Zou, H.L., Deng, Z.C.: Control instability and enhance performance of a dielectric elastomer balloon with a passive layer. J. Phys. D Appl. Phys. 52, 195301 (2019)

    Google Scholar 

  • Anderson, I., Gisby, T., McKay, T., Brien, B., Calius, E.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Google Scholar 

  • Antoniadis, I.A., Venetsanos, D.T., Papaspyridis, F.G.: Diesysdynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges. Smart Mater. Struct. 22, 104007 (2013)

    Google Scholar 

  • Bai, Y., Jiang, Y., Chen, B., Chiang Foo, C., Zhou, Y., Xiang, F., Zhou, J., Wang, H., Suo, Z.: Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104(6), 062902 (2014)

    Google Scholar 

  • Bele, A., Tugui, C., Asandulesa, M., Ionita, D., Vasiliu, L., Stiubianu, G., Iacob, M., Racles, C., Cazacu, M.: Conductive stretchable composites properly engineered to develop highly commpliant electrodes for dielectric elastomer actuators. Smart Mater. Struct. 27, 105005 (2018)

    Google Scholar 

  • Bortot, E.: Analysis of multilayer electro-active spherical balloons. J. Mech. Phys. Solids 101, 250–267 (2017)

    MathSciNet  Google Scholar 

  • Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C., Suo, Z., Aksay, A.L.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101(9), 091907 (2012)

    Google Scholar 

  • Calabrese, L., Frediani, G., Gei, M., De, R.D., Carpi, F.: Active compression bandage made of electroactive elastomers. IEEE-ASME T Mech. 23(5), 2328–2337 (2018)

    Google Scholar 

  • Cao, X.N., Zhang, M.Q., Zhang, Z., Xu, Y., Xiao, Y.H., Li, T.F.: Review of soft linear actuator and the design of a dielectric elastomer linear actuator. Acta Mech. Solida Sin. 32, 566–579 (2019)

    Google Scholar 

  • Carpi, F.: Electromechanically active polymers. Polym. Int. 59(3), 277–278 (2010)

    Google Scholar 

  • Carpi, F., Kornbluh, R., Sommer, L.P., Alici, G.: Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir. Biomim. 6(4), 045006 (2011)

    Google Scholar 

  • Caspari, P., Dunki, S.J., Nueesch, F., Opris, D.: Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability. J. Mater. Chem. C 6, 2043–2053 (2018)

    Google Scholar 

  • Chen, B., Bai, Y., Xiang, F., Sun, J., Chen, Y.M.C., Wang, H., Zhou, J., Suo, Z.: Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. Pol. Phys. 52, 1055–1060 (2014a)

    Google Scholar 

  • Chen, B., Lu, J.J., Yang, C.H., Yang, J.H., Zhou, J., Chen, Y.M., Suo, Z.: Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014b)

    Google Scholar 

  • Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S., Tolley, M.T.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot 3(17), eaat1893 (2018)

    Google Scholar 

  • Eder-Goy, D., Zhao, Y., Xu, B.: Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading. Acta Mech. 228, 4293–4307 (2017)

    MathSciNet  Google Scholar 

  • Giousouf, M., Kovacs, G.: Dielectric elastomer actuators used for pneumatic valve technology. Smart Mater. Struct. 22(10), 104010 (2013)

    Google Scholar 

  • Goh, Y.F., Akbari, S., Vo, T.V.K., Koh, S.: Electrically-induced actuation of acrylic-based dielectric elastomers in excess of 500% strain. Soft Robot 5, 675–684 (2018)

    Google Scholar 

  • Gupta, U., Qin, L., Wang, Y., Godaba, H., Zhu, J.: Soft robots based on dielectric elastomer actuators: a review. Smart Mater. Struct. 28, 103002 (2019)

    Google Scholar 

  • He, T., Wang, Z.: Electro-viscoelastic performance of a tubular dielectric elastomer actuator. Int. J. Mech. Mater. Des. 15(2), 199–212 (2019)

    Google Scholar 

  • Hines, L., Petersen, K., Sitti, M.: Inflated soft actuators with reversible stable deformations. Adv. Mater. 28, 3690–3696 (2016)

    Google Scholar 

  • Huang, J., Li, T., Chiang, F.C., Zhu, J., Clarke, D.R., Suo, Z.: Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Appl. Phys. Lett. 100(4), 041911 (2012)

    Google Scholar 

  • Kofod, G.: The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D Appl. Phys. 41, 215405 (2008)

    Google Scholar 

  • Koh, S.J.A., Li, T.F., Zhou, J.X., Zhao, X.H., Hong, W., Zhu, J., Suo, Z.G.: Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. Pol. Phys. 49(7), 504–515 (2011)

    Google Scholar 

  • Kolbasova, A., Sinha-Rayabc, S., LYarin, A.: Theoretical and experimental study of punched laminate composites protected by outer paper layer. J. Mech. Phys. Solids 128, 117–136 (2019)

    MathSciNet  Google Scholar 

  • Li, J., Celiz, A.D., Yang, J., Yang, Q., Wamala, I., Whyte, W., Seo, B.R., Vasilyev, N.V., Vlassak, J.J., Suo, Z.: Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017a)

    Google Scholar 

  • Li, T., Li, G., Liang, Y., Cheng, T., Jing, D., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y.: Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017b)

    Google Scholar 

  • Li, Y., Oh, I., Chen, J., Zhang, H., Hu, Y.: Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane. Int. J. Solids Struct. 152, 28–38 (2018)

    Google Scholar 

  • Li, Z., Zhu, J., Foo, C.C., Yap, C.H.: A robust dual-membrane dielectric elastomer actuator for large volume fluid pumping via snap-through. Appl. Phys. Lett. 111(21), 212901 (2017c)

    Google Scholar 

  • Liu, J., Chen, Z., Liang, X., Huang, X., Mao, G., Hong, W., Yu, H., Qu, S.: Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. J. Mech. Phys. Solids 112, 458–471 (2018)

    Google Scholar 

  • Liu, L., Liu, Y., Luo, X., Li, B., Leng, J.: Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation. Mech. Mater. 55(14), 60–72 (2012)

    Google Scholar 

  • Liu, L., Zhang, Z., Li, J., Li, T., Leng, J.Y.: Stability of dielectric elastomer/carbon nanotube composites coupling electrostriction and polarization. Compos. Part-B Eng. 78, 35–41 (2015)

    Google Scholar 

  • Lu, T.Q., Huang, J.S., Jordi, C., Kovacs, G., Huang, R., Clarke, D.R., Suo, Z.G.: Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8(22), 6167–6173 (2012)

    Google Scholar 

  • Ma, C., Yang, M., Jia, K., Lu, T.Q.: Experimental investigations on the out-of-plane sub-harmonic vibration of a circular dielectric elastomer actuator. Acta Mech. Solida Sin. 32, 591–598 (2019)

    Google Scholar 

  • Moretti, G., Papini, G.P.R., Righi, M., Forehand, D., Ingram, D., Vertechy, R., Fontana, M.: Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater. Struct. 27, 035015 (2018)

    Google Scholar 

  • Ohalloran, A., Omalley, F., Mchugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008)

    Google Scholar 

  • Patra, K., Sahu, R.: A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int. J. Mech. Mater. Des. 11(1), 79–90 (2015)

    Google Scholar 

  • Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Google Scholar 

  • Pourazadi, S., Shagerdmootaab, A., Chan, H., Moallem, M., Menon, C.: On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater. Struct. 26, 115007 (2017)

    Google Scholar 

  • Rosset, S., Shea, H.R.: Small, fast, and tough: Shrinking down integrated elastomer transducers. Appl. Phys. Rev. 3, 031105 (2016)

    Google Scholar 

  • Rothemund, P., Ainla, A., Belding, L., Preston, D.J., Kurihara, S., Suo, Z.G., Whitesides, G.M.: A soft, bistable valve for autonomous control of soft actuators. Sci. Robot 3(16), eaar7986 (2018)

    Google Scholar 

  • Rudykh, S., Bhattacharya, K., Debotton, G.: Snap-through actuation of thick-wall electroactive balloons. Int. J. Non-linear Mech. 47(2), 206–209 (2012)

    Google Scholar 

  • Sharma, A.K., Joglekar, M.M.: Effect of anisotropy on the dynamic electromechanical instability of a dielectric elastomer actuator. Smart Mater. Struct. 28, 015006 (2019)

    Google Scholar 

  • Sheng, J., Chen, H., Li, B., Wang, Y.: Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater. Struct. 23, 045010 (2014)

    Google Scholar 

  • Shintake, J., Cacucciolo, V., Shea, H., Floreano, D.: Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot 5, 466–474 (2018)

    Google Scholar 

  • Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Google Scholar 

  • Tang, D., Lim, C., Hong, L., Jiang, J., Lai, S.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn. 88, 2255–2264 (2017)

    Google Scholar 

  • Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H.A., Aksay, I.A., Holmes, D.P.: Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matter 10(27), 4789–4794 (2014)

    Google Scholar 

  • Wang, Y., Chen, B., Bai, Y., Wang, H., Zhou, J.: Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Appl. Phys. Lett. 104, 064101 (2014)

    Google Scholar 

  • Yu, X., Lu, Z., Cheng, L., Cui, F.: Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control. J. Sound Vib. 387, 114–126 (2016)

    Google Scholar 

  • Zhang, C., Sun, W., Chen, H., Liu, L., Li, B., Li, D.: Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. J. Appl. Phys. 119(9), 094108 (2016)

    Google Scholar 

  • Zhang, J., Tang, L., Li, B., Wang, Y., Chen, H.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 084902 (2015)

    Google Scholar 

  • Zhang, J., Chen, H., Li, D.: Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Phys. Rev. Appl. 8, 064016 (2017)

    Google Scholar 

  • Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104(17), 178302 (2010)

    Google Scholar 

  • Zhao, Y., Zha, J.W., Yin, L.J., Gao, Z.S., Wen, Y.Q., Dang, Z.M.: Remarkable electrically actuation performance in advanced acrylic-based dielectric elastomers without pre-strain at very low driving electric field. Polymer 137, 269–275 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91648101, 11972290), the Natural Science Foundation of Shaanxi Province of China (2020JM-105), the Fundamental Research Funds for the Central Universities (3102018zy012) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201910).

Funding

This work was supported by the National Natural Science Foundation of China (91648101, 11972290), the Natural Science Foundation of Shaanxi Province of China (2020JM-105) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lin Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, SQ., Zou, HL. & Deng, ZC. A dielectric elastomer membrane integrated with protective passive layers under explicit and implicit prestretch. Int J Mech Mater Des 16, 733–748 (2020). https://doi.org/10.1007/s10999-020-09499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09499-6

Keywords

Navigation