Skip to main content

Advertisement

Log in

Type 2 diabetes mellitus management in patients with chronic kidney disease: an update

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a chronic multisystem disease. Diabetic nephropathy (DN) is one of its significant microvascular complications, associated with increased morbidity and mortality. The aim of this article is to review the literature regarding the latest advances in the management of type 2 DM (T2DM) in patients with chronic kidney disease (CKD). We initially refer to the screening guidelines, the diagnostic tests used, the need for novel biomarkers in DN, the recent advances in high-risk patient identification, the recommended glycemic targets, and concerns regarding the accuracy of HbA1c in these patients. Then, a detailed explanation of the appropriate medical management based on evidence from recent trials is presented, analyzed, and discussed. All patients with T2DM should be screened for albuminuria at initial diagnosis and annually thereafter. Proteomics and metabolomics today represent promising diagnostic tools. Optimal glycemic control, with individualized HbA1c targets, is fundamental for reduced onset or delayed progression of DN and microvascular complications, in general. This can be enhanced by lifestyle modifications and pharmacological interventions when needed. Metformin represents the first pharmacological step, with, recently, a broadened indication for patients with impaired renal function. If HbA1c remains above the target in patients with established CKD, SGLT2i or GLP-1 RA are the preferred second-line agents, as introduced in all new guidelines. This change was the result of recent landmark trials that highlighted the superiority of the two aforementioned medication categories in terms of both renal and cardiovascular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. International Diabetes Federation (2017) IDF diabetes atlas. International Diabetes Federation, Brussels

    Google Scholar 

  2. Tuttle KR, Bakris GL, Bilous RW et al (2014) Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care 37:2864–2883

    PubMed  PubMed Central  Google Scholar 

  3. Buse JB, Wexler DJ, Tsapas A et al (2020) 2019 Update To: Management of Hyperglycemia in Type 2 Diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43:487–493

    CAS  PubMed  Google Scholar 

  4. Saran R, Robinson B, Abbott KC et al (2017) US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 69:A7–A8

    PubMed  PubMed Central  Google Scholar 

  5. Zou L-X, Sun L (2019) Global diabetic kidney disease research from 2000 to 2017: a bibliometric analysis. Medicine 98(6):e14394

    PubMed  PubMed Central  Google Scholar 

  6. American Diabetes Association (2020) 11. Microvascular complications and foot care. Standards of medical care in diabetes-2020. Diabetes Care 43:S135–SS51

    Google Scholar 

  7. National Kidney Foundation (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Google Scholar 

  8. Fox CS, Matsushita K, Woodward M et al (2012) Chronic kidney disease prognosis consortium. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–1673

    PubMed  PubMed Central  Google Scholar 

  9. Afkarian M, Sachs MC, Kestenbaum B et al (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24:302–308

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Inker LA, Schmid CH, Tighiouart H (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Delanaye P, Glassock RJ, Pottel H et al (2016) An age-calibrated definition of chronic kidney disease: rationale and benefits. Clin Biochem Rev 37:17–26

    PubMed  PubMed Central  Google Scholar 

  12. Hemmelgarn BR, Manns BJ, Lloyd A et al (2010) Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303:423–429

    CAS  PubMed  Google Scholar 

  13. Matsushita K, van der Velde M, Astor BC et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    PubMed  PubMed Central  Google Scholar 

  14. van der Velde M, Matsushita K, Coresh J et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79:1341–1352

    PubMed  Google Scholar 

  15. Kramer HJ, Nguyen QD, Curhan G, Hsu C-Y (2003) Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289:3273–3277

    PubMed  Google Scholar 

  16. Molitch ME, Steffes M, Sun W, Epidemiology of Diabetes Interventions and Complications Study Group et al (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications study. Diabetes Care 33:1536–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Papadopoulou-Marketou N, Paschou SA, Marketos N et al (2018) Diabetic nephropathy in type 1 diabetes. Minerva Med 109:218–228

    PubMed  Google Scholar 

  18. McKenna K, Thompson C (1997) Microalbuminuria: a marker to increased renal and cardiovascular risk in diabetes mellitus. Scott Med J 42:99–104

    CAS  PubMed  Google Scholar 

  19. Hovind P, Tarnow L, Rossing P et al (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105–1108

    PubMed  PubMed Central  Google Scholar 

  20. de Boer IH, Rue TC, Cleary PA et al (2011) Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med 171:412–420

    PubMed  PubMed Central  Google Scholar 

  21. Matheson A, Willcox MD, Flanagan J et al (2010) Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev 26:150–171

    CAS  PubMed  Google Scholar 

  22. Jeon YK, Kim MR, Huh JE et al (2011) Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. J Korean Med Sci 26:258–263

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Currie G, McKay G, Delles C (2014) Biomarkers in diabetic nephropathy: present and future. World J Diabetes 5:763–776

    PubMed  PubMed Central  Google Scholar 

  24. Gluhovschi C, Gluhovschi G, Petrica L et al (2016) Urinary biomarkers in the assessment of early diabetic nephropathy. J Diabetes Res 2016:4626125

    PubMed  PubMed Central  Google Scholar 

  25. Cañadas-Garrem M, Anderson K, McGoldrick J et al (2018) Genomic approaches in the search for molecular biomarkers in chronic kidney disease. J Transl Med 16:292

    Google Scholar 

  26. Tofte N, Lindhardt M, Adamova K et al (2020) Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol 8:301–312

  27. Gordin D, Shah H, Shinjo T et al (2019) Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care 42:1263–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  28. American Diabetes Association (2020) 6. Glycemic targets. Standards of medical care in diabetes-2020. Diabetes Care 43:S66–S76

    Google Scholar 

  29. Paschou SA, Leslie RD (2013) Personalizing guidelines for diabetes management: twilight or dawn of the expert? BMC Med 11:161

    PubMed  PubMed Central  Google Scholar 

  30. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865

    Google Scholar 

  31. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  32. Holman RR, Paul SK, Bethel MA et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    CAS  PubMed  Google Scholar 

  33. Adler AI, Stratton IM, Neil HAW et al (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321:412–419

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Retnakaran R, Cull CA, Thorne KI et al (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55:1832–1839

    CAS  PubMed  Google Scholar 

  35. Duckworth W, Abraira C, Moritz T et al (2009) VADT investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139

    CAS  PubMed  Google Scholar 

  36. Patel A, MacMahon S, Chalmers J et al (2008) ADVANCE collaborative group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    CAS  PubMed  Google Scholar 

  37. Ismail-Beigi F, Craven T, Banerji MA, ACCORD trial group et al (2010) Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomized trial. Lancet 376:419–430

    PubMed  PubMed Central  Google Scholar 

  38. Kalantar-Zadeh K (2012) A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death: A1C remains the gold standard outcome predictor in diabetic dialysis patients. Diabetes Care 35:1625–1628

    PubMed  PubMed Central  Google Scholar 

  39. Beck RW, Connor CG, Mullen DM et al (2017) The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes Care 40:994–999

    CAS  PubMed  PubMed Central  Google Scholar 

  40. American Diabetes Association (2020) 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care 43:S98–S110

    Google Scholar 

  41. Paschou SA, Alexandrides T (2019) A year in type 2 diabetes mellitus: 2018 review based on the Endorama lecture. Hormones (Athens) 18:401–408

    Google Scholar 

  42. American Diabetes Association (2020) 5. Lifestyle management: standards of medical care in diabetes-2020. Diabetes Care 42:S48–S65

    Google Scholar 

  43. Powers MA, Bardsley J, Cypress M et al (2015) Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care 38:1372–1382

    PubMed  Google Scholar 

  44. Norris SL, Lau J, Smith SJ et al (2002) Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care 25:1159–1171

    PubMed  Google Scholar 

  45. Haas L, Maryniuk M, Beck J et al (2014) 2012 standards revision task force. National standards for diabetes self-management education and support. Diabetes Care 37:S144–S153

    PubMed  Google Scholar 

  46. Frosch DL, Uy V, Ochoa S, Mangione CM (2011) Evaluation of a behavior support intervention for patients with poorly controlled diabetes. Arch Intern Med 171:2011–2017

    PubMed  Google Scholar 

  47. Cooke D, Bond R, Lawton J et al (2013) U.K. NIHR DAFNE study group. Structured type 1 diabetes education delivered within routine care: impact on glycemic control and diabetes-specific quality of life. Diabetes Care 36:270–272

    PubMed  PubMed Central  Google Scholar 

  48. Chrvala CA, Sherr D, Lipman RD (2016) Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 99:926–943

    PubMed  Google Scholar 

  49. Steinsbekk A, Rygg LØ, Lisulo M et al (2012) Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res 12:213

    PubMed  PubMed Central  Google Scholar 

  50. Deakin T, Mc Shane CE, Cade JE, Williams RD (2005) Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst Rev 2:CD003417

    Google Scholar 

  51. Cochran J, Conn VS (2008) Meta-analysis of quality of life outcomes following diabetes self- management training. Diabetes Educ 34:815–823

    PubMed  PubMed Central  Google Scholar 

  52. He X, Li J, Wang B et al (2017) Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine 55:712–731

    CAS  PubMed  Google Scholar 

  53. Esposito K, Maiorino MI, Ciotola M et al (2009) Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 151:306–314

    PubMed  Google Scholar 

  54. Boucher JL (2017) Mediterranean eating pattern. Diabetes Spectr 30:72–76

    PubMed  PubMed Central  Google Scholar 

  55. Cespedes EM, Hu FB, Tinker L et al (2016) Multiple healthful dietary patterns and type 2 diabetes in the Women’s Health Initiative. Am J Epidemiol 183:622–633

    PubMed  PubMed Central  Google Scholar 

  56. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383:1999–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Campbell AP (2017) DASH eating plan: an eating pattern for diabetes management. Diabetes Spectr 30:76–81

    PubMed  PubMed Central  Google Scholar 

  58. Rinaldi S, Campbell EE, Fournier J et al (2016) A comprehensive review of the literature supporting recommendations from the Canadian Diabetes Association for the use of a plant-based diet for management of type 2 diabetes. Can J Diabetes 40:471–477

    PubMed  Google Scholar 

  59. Pawlak R (2017) Vegetarian diets in the prevention and management of diabetes and its complications. Diabetes Spectr 30:82–88

    PubMed  PubMed Central  Google Scholar 

  60. Paschou SA, Anagnostis P, Goulis DG (2018) Weight loss for the prevention and treatment of type 2 diabetes. Maturitas 108:A1–A2

    PubMed  Google Scholar 

  61. Mills KT, Chen J, Yang W et al (2016) Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315:2200–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Murray DP, Young L, Waller J et al (2018) Is dietary protein intake predictive of 1-year mortality in dialysis patients? Am J Med Sci 356:234–243

    PubMed  Google Scholar 

  63. Evert AB, Boucher JL, Cypress M et al (2014) Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 37:S120–S143

    PubMed  Google Scholar 

  64. Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133:187–225

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Colberg SR, Sigal RJ, Yardley JE et al (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079

    PubMed  PubMed Central  Google Scholar 

  66. Colberg SR (2013) Exercise and diabetes: a clinician's guide to prescribing physical activity. American Diabetes Association, Arlington

  67. Maruthur NM, Tseng E, Hutfless S et al (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751

    PubMed  Google Scholar 

  68. Out M, Kooy A, Lehert P, Schalkwijk CA, Stehouwer CDA (2018) Long-term treatment with metformin in type 2 diabetes and methylmalonic acid: post hoc analysis of a randomized controlled 4.3 year trial. J Diabetes Complicat 32:171–178

    Google Scholar 

  69. Aroda VR, Edelstein SL, Goldberg RB et al (2016) Diabetes prevention program research group. Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab 101:1754–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  70. U.S. Food and Drug Administration (2016) FDA drug safety communication: FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function. http://www.fda.gov/Drugs/DrugSafety/ucm493244.htm. Accessed 30 April 2020

  71. Wanner C, Inzucchi SE, Lachin JM, EMPA-REG OUTCOME investigators et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334

    CAS  PubMed  Google Scholar 

  72. Cherney DZI, Perkins BA, Soleymanlou N et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597

    CAS  PubMed  Google Scholar 

  73. Heerspink HJL, Desai M, Jardine M et al (2017) Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 28:368–375

    CAS  PubMed  Google Scholar 

  74. Neal B, Perkovic V, Mahaffey KW et al (2017) CANVAS program collaborative group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657

    CAS  PubMed  Google Scholar 

  75. Zelniker TA, Braunwald E (2018) Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol 72:1845–1855

    CAS  PubMed  Google Scholar 

  76. Marso SP, Daniels GH, Brown-Frandsen K et al (2016) LEADER steering committee; LEADER trial investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooper ME, Perkovic V, McGill JB et al (2015) Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am J Kidney Dis 66:441–449

    CAS  PubMed  Google Scholar 

  78. Mann JFE, Ørsted DD, Brown-Frandsen K, LEADER steering committee and investigators et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377:839–848

    CAS  PubMed  Google Scholar 

  79. Marso SP, Bain SC, Consoli A, SUSTAIN6 investigators et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844

    CAS  PubMed  Google Scholar 

  80. Zinman B, Wanner C, Lachin JM, EMPAREG OUTCOME investigators et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    CAS  PubMed  Google Scholar 

  81. Mosenzon O, Wiviott SD, Cahn A et al (2019) Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol 7:606–617

    CAS  PubMed  Google Scholar 

  82. Gerstein H, Colhoun H, Dagenais G et al (2019) Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394:131–138

    CAS  PubMed  Google Scholar 

  83. Jardine MJ, Mahaffey KW, Neal B, CREDENCE study investigators et al (2017) The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol 46:462–472

    CAS  PubMed  Google Scholar 

  84. Tuttle KR et al (2018) Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 6:605–617

    CAS  PubMed  Google Scholar 

  85. Neuen BL, Ohkuma T, Neal B et al (2018) Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function: data from the CANVAS program. Circulation 138:1537–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Holstein A, Plaschke A, Hammer C et al (2003) Hormonal counter regulation and consecutive glimepiride serum concentrations during severe hypoglycaemia associated with glimepiride therapy. Eur J Clin Pharmacol 59:747–754

    CAS  PubMed  Google Scholar 

  88. Landman GW, de Bock GH, van Hateren KJ et al (2014) Safety and efficacy of gliclazide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PLoS One 9:e82880

    PubMed  PubMed Central  Google Scholar 

  89. Balant L, Zahnd G, Gorgia A et al (1973) Pharmacokinetics of glipizide in man: influence of renal insufficiency. Diabetologia 331–338. https://doi.org/10.1007/BF01218443

  90. Arjona Ferreira JC, Marre M, Barzilai N et al (2013) Efficacy and safety of sitagliptin versus glipizide in patients with type 2 diabetes and moderate-to-severe chronic renal insufficiency. Diabetes Care 36:1067–1073

    PubMed  PubMed Central  Google Scholar 

  91. Karter AJ, Warton EM, Lipska KJ et al (2017) Development and validation of a tool to identify patients with type 2 diabetes at high risk of hypoglycemia-related emergency department or hospital use. JAMA Intern Med 177:1461–1470

    PubMed  PubMed Central  Google Scholar 

  92. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    CAS  PubMed  Google Scholar 

  93. Rosenstock J, Perkovic V, Johansen OE et al (2019) Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 321:69–79

    CAS  PubMed  Google Scholar 

  94. Trevisan R (2017) The role of vildagliptin in the therapy of type 2 diabetic patients with renal dysfunction. Diabetes Ther 8:1215–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Eggleton JS, Jialal I (2020) Thiazolidinediones. StatPearls, Treasure Island https://www.ncbi.nlm.nih.gov/books/NBK551656/. Accessed 30 April 2020

  96. Rabkin R, Ryan MP, Duckworth WC (1984) The renal metabolism of insulin. Diabetologia 27:351–357

    CAS  PubMed  Google Scholar 

  97. Haluzic M, Philis-Tsimikas A, Bosnyák Z et al (2019) 146-OR: Differences in HbA1c-Lowering effect and hypoglycemia risk between Gla-300 and IDeg according to renal function in the BRIGHT trial. Diabetes 68:146–OR. https://doi.org/10.2337/db19-146-OR

  98. Baldwin D, Zander J, Munoz C et al (2012) A randomized trial of two weight-based doses of insulin glargine and glulisine in hospitalized subjects with type 2 diabetes and renal insufficiency. Diabetes Care 35:1970–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hahr A, Molitch M (2015) Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol 1:2

    PubMed  PubMed Central  Google Scholar 

  100. Kalra S, Khandelwal D, Bajaj S et al (2018) Sulfonylureas at the glomerular battlefield. Eur Endocrinol 14:15–17

    PubMed  PubMed Central  Google Scholar 

  101. Bae JH, Kim S, Park EG et al (2019) Effects of dipeptidyl peptidase-4 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis. Endocrinol Metab 34:80–92

    CAS  Google Scholar 

  102. Qin Y, Wang X, Zhang M (2018) Effect of thiazolidinediones on renal outcomes in diabetic patients with microalbuminuria or macroalbuminuria-asystematic review and meta-analysis. Diabetes 67:532. https://doi.org/10.2337/db18-532-P

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula A. Paschou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinaki, Z., Kapnisi, S., Theodorelou-Charitou, SA. et al. Type 2 diabetes mellitus management in patients with chronic kidney disease: an update. Hormones 19, 467–476 (2020). https://doi.org/10.1007/s42000-020-00212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00212-y

Keywords

Navigation