Skip to main content
Log in

Gallagherian Prime Geodesic Theorem in Higher Dimensions

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Using the Gallagher–Koyama approach, we reduce the exponent in the error term of the prime geodesic theorem for real hyperbolic manifolds with cusps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avdispahić, M.: On Koyama’s refinement of the prime geodesic theorem. Proc. Japan Acad. Ser. A 94(3), 21–24 (2018)

    Article  MathSciNet  Google Scholar 

  2. Avdispahić, M.: Gallagherian \(PGT\) on \(PSL(2, {\mathbb{Z}}) \). Funct. Approximatio. Comment. Math. 58(2), 207–213 (2018)

    Article  MathSciNet  Google Scholar 

  3. Avdispahić, M.: Errata and addendum to On the prime geodesic theorem for hyperbolic 3-manifolds Math. Nachr. 291 (2018), no. 14–15, 2160–2167, Math. Nachr. 292(4), 691–693 (2019)

  4. Avdispahić, M.: Prime geodesic theorem of Gallagher type for Riemann surfaces, Anal. Math. (to appear)

  5. Avdispahić, M.: Prime geodesic theorem for the modular surface. Hacet. J. Math. Stat. (to appear). https://doi.org/10.15672/hujms.568323

  6. Avdispahić, M., Gušić, Dž: On the error term in the prime geodesic theorem. Bull. Korean Math. Soc. 49(2), 367–372 (2012)

    Article  MathSciNet  Google Scholar 

  7. Balkanova, O., Chatzakos, D., Cherubini, G., Frolenkov, D., Laaksonen, N.: Prime geodesic theorem in the 3-dimensional hyperbolic space. Trans. Am. Math. Soc. 372(8), 5355–5374 (2019)

    Article  MathSciNet  Google Scholar 

  8. Balkanova, O., Frolenkov, D.: Sums of Kloosterman sums in the prime geodesic theorem. Q. J. Math. 70(2), 649–674 (2019)

    Article  MathSciNet  Google Scholar 

  9. Balkanova, O., Frolenkov, D.: Prime geodesic theorem for the Picard manifold, arXiv:1804.00275v2

  10. Balog, A., Biró, A., Harcos, G., Maga, P.: The prime geodesic theorem in square mean. J. Number Theory 198, 239–249 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chatzakos, D., Cherubini, G., Laaksonen, N.: Second moment of the prime geodesic theorem for \(PSL(2, {\mathbb{Z}}[i])\), arXiv:1812.11916

  12. Cherubini, G., Guerreiro, J.: Mean square in the prime geodesic theorem. Algebra Number Theory 12(3), 571–597 (2018)

    Article  MathSciNet  Google Scholar 

  13. DeGeorge, D.L.: Length spectrum for compact locally symmetric spaces of strictly negative curvature. Ann. Sci. Ecole Norm. Sup. 10, 133–152 (1977)

    Article  MathSciNet  Google Scholar 

  14. Gallagher, P.X.: A large sieve density estimate near \(\sigma =1\). Invent. Math. 11, 329–339 (1970)

    Article  MathSciNet  Google Scholar 

  15. Gallagher, P.X.: Some consequences of the Riemann hypothesis. Acta Arith. 37, 339–343 (1980)

    Article  MathSciNet  Google Scholar 

  16. Gangolli, R.: The length spectra of some compact manifolds of negative curvature. J. Differ. Geom. 12, 403–424 (1977)

    Article  MathSciNet  Google Scholar 

  17. Gangolli, R., Warner, G.: Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78, 1–44 (1980)

    Article  MathSciNet  Google Scholar 

  18. Kaneko, I.: Second moment of the prime geodesic theorem for \(PSL(2, {\mathbb{Z}}[i])\) and bounds on a spectral exponential sum, arXiv:1903.05111

  19. Koyama, S.: Refinement of prime geodesic theorem. Proc. Japan Acad. Ser. A 92(7), 77–81 (2016)

    Article  MathSciNet  Google Scholar 

  20. Park, J.: Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps, In: van Dijk, G., Wakayama, M. (eds.) Casimir Force, Casimir Operators and the Riemann Hypothesis, 9–13 November 2009, Kyushu University, Fukuoka, Japan, pp. 89–104, Walter de Gruyter (2010)

  21. Randol, B.: On the asymptotic distribution of closed geodesics on compact Riemann surfaces. Trans. Am. Math. Soc. 233, 241–247 (1977)

    Article  MathSciNet  Google Scholar 

  22. Sarnak, P.: The arithmetic and geometry of some hyperbolic three-manifolds. Acta Math. 151, 253–295 (1983)

    Article  MathSciNet  Google Scholar 

  23. Soundararajan, K., Young, M.P.: The prime geodesic theorem. J. Reine Angew. Math. 676, 105–120 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for suggestions that resulted in adding the remark on lower dimensions (and related references) to the initial version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenan Šabanac.

Additional information

Communicated by Emrah Kilic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdispahić, M., Šabanac, Z. Gallagherian Prime Geodesic Theorem in Higher Dimensions. Bull. Malays. Math. Sci. Soc. 43, 3019–3026 (2020). https://doi.org/10.1007/s40840-019-00849-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00849-y

Keywords

Mathematics Subject Classification

Navigation