Skip to main content
Log in

Shear thickening fluid based on silica with neodymium oxide nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The rheological performance of shear thickening fluid (STF) based on silica with neodymium oxide nanoparticles (\(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\hbox {-STF}\)) was investigated in this study. \(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\hbox {-STF}\) suspensions of varied concentrations (9–15 wt%) were prepared using an ultrasonic oscillator. The presence of \(\hbox {Nd}_{2}\hbox {O}_{3}\) particle and its interaction with silica nanoparticles in the \(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\hbox {-STF}\) were analysed using scanning electron microscopy, X-ray diffractometry and energy dispersive spectroscopy. \(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\) interaction demonstrated that silica nanoparticle could be completely attached on the needle branches of the \(\hbox {Nd}_{2}\hbox {O}_{3}\) particles, and formed a considerable clustering effect. The steady rheological testing results indicated that an appropriate amount of \(\hbox {Nd}_{2}\hbox {O}_{3}\) particle resulted in a marked increase in the peak viscosity from 51.95 (\(\hbox {SiO}_{2}\hbox {-STF}\)) to 218.94 Pa.s (\(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\hbox {-STF}\)), and a concomitant decrease in the critical shear rate from 199.65 (\(\hbox {SiO}_{2}\hbox {-STF}\)) to \(\hbox {50.18 s}^{-1}\) (\(\hbox {Nd}_{2}\hbox {O}_{3}\hbox {/SiO}_{2}\hbox {-STF}\)). Moreover, although the peak viscosity declined with the rise in temperature, shear thickening was remarkable compared to those of \(\hbox {SiO}_{2}\hbox {-STF}\) and became highly remarkable with \(\hbox {Nd}_{2}\hbox {O}_{3}\) particle mass fraction increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tian T and Nakano M 2017 Smart Mater. Struct. 26 035038

    Article  Google Scholar 

  2. Qin J, Zhang G and Shi X 2016 J. Dispersion Sci. Technol. 37 1599

    Article  CAS  Google Scholar 

  3. Wu X-J, Wang Y, Yang W, Xie B-H, Yang M-B and Dan W 2012 Soft Matter 8 10457

    Article  CAS  Google Scholar 

  4. Nakonieczna P, Wierzbicki Ł, Wróblewski R, Płociński T and Leonowicz M 2019 Bull. Mater. Sci. 42 162

    Article  Google Scholar 

  5. Lee B-W and Kim C-G 2012 Adv. Compos. Mater. 21 177

    Article  CAS  Google Scholar 

  6. Hasanzadeh M and Mottaghitalab V 2014 J. Mater. Eng. Perform. 23 1182

    Article  CAS  Google Scholar 

  7. Gurgen S and Kushan M C 2017 Polym. Test. 64 296

    Article  CAS  Google Scholar 

  8. Pinto F and Meo M 2017 Appl. Compos. Mater. 24 643

    Article  CAS  Google Scholar 

  9. Yeh F-Y, Chang K-C, Chen T-W and Yu C-H 2014 J. Chin. Inst. Eng. 37 983

    Article  CAS  Google Scholar 

  10. Lin K, Liu H, Wei M, Zhou A and Bu F 2018 Smart Mater. Struct. 28 025007

    Article  Google Scholar 

  11. Wei M, Hu G, Li L and Liu H 2018 Meccanica 53 1

    Article  Google Scholar 

  12. Ge J H, Tan Z H, Li W H and Zhang H 2017 Results Phys. 7 3369

    Article  Google Scholar 

  13. Gürgen S, Kuşhan M C and Li W 2016 Korea-Aust. Rheol. J. 28 121

    Article  Google Scholar 

  14. Sha X, Yu K, Cao H and Qian K 2013 J. Nanopart. Res. 15 1816

    Article  Google Scholar 

  15. Ghosh A, Chauhan I, Majumdar A and Butola B S 2017 Cellulose 24 4163

    Article  CAS  Google Scholar 

  16. Jiang W, Sun Y, Xu Y, Peng C, Gong X and Zhang Z 2010 Rheol. Acta 49 1157

    Article  CAS  Google Scholar 

  17. Xu Y-L, Gong X-L, Peng C, Sun Y-Q, Jiang W-Q and Zhang Z 2010 Chin. J. Chem. Phys. 23 342

    Article  CAS  Google Scholar 

  18. Qin J, Zhang G, Shi X and Tao M 2015 J. Nanopart. Res. 17 333

    Article  Google Scholar 

  19. Tian T, Peng G, Li W, Ding J and Nakano M 2015 Korea-Aust. Rheol. J. 27 17

    Article  Google Scholar 

  20. Yue C-F, Huang S-J, Chen J-K, Li H-T and Chan K-S 2018 Met. Mater. Int. 24 307

    Article  CAS  Google Scholar 

  21. Gu M Y, Wei G L, Liu W C and Wu G H 2017 Mater. Corros. 68 436

    Article  CAS  Google Scholar 

  22. Wang S-N, Sun M-M, Huang M-L, Cheng T-Q, Wang J-L, Yuan S-D et al 2017 Mol. Catal. 433 162

    Article  CAS  Google Scholar 

  23. He Q, Gong X, Xuan S, Jiang W and Chen Q 2015 J. Mater. Sci. 50 6041

    Article  CAS  Google Scholar 

  24. Hasanzadeh M, Mottaghitalab V, Babaei H and Rezaei M 2016 Compos. Part A: Appl. Sci. Manuf. 88 263

    Article  CAS  Google Scholar 

  25. Wei M, Sun L, Zhang C, Qi P and Zhu J 2019 J. Mater. Sci. 54 346

    Article  CAS  Google Scholar 

  26. Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H and Yang M-B 2015 RSC Adv. 5 18367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key R&D Program of China (Grant No. 2018YFC1504303). We are extremely grateful to the anonymous reviewers for their valuable criticisms and useful suggestions that aided in improving the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghai Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Lv, Y., Wei, M. et al. Shear thickening fluid based on silica with neodymium oxide nanoparticles. Bull Mater Sci 43, 132 (2020). https://doi.org/10.1007/s12034-020-02134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02134-2

Keywords

Navigation