Skip to main content

Advertisement

Log in

Simulation of Reaction Kinetics and Heat Transfer Effects on Product Yields from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in Fluidized Bed Reactor

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The present work aims to optimize the operating conditions for biofuel production from fast pyrolysis of oil palm empty fruit bunch (OPEFB) biomass in a fluidized bed reactor. The coupled model of global reaction kinetics and heat transfer was applied to investigate the effects of operating conditions (reaction temperature in the range of 748–798 K, vapor residence time in the range of 0.5–2 s, and particle size in the range of 150–500 μm) on the yields of products (liquid (bio-oil), gas, and char) and particle heat transfer of the OPEFB biomass fast pyrolysis. The simulation results of the present model validated the reported experimental data of the product yields of OPEFB biomass fast pyrolysis. The results showed that the maximum yield of high-quality liquid product was obtained at a vapor residence time of 1 s and a reaction temperature of 773 K. Moreover, the OPEFB particle size in the range of 300–350 μm gave the highest yield of liquid product and the good heat transfer of particles. The optimum operating conditions from the simulation of the coupled model can be utilized for the experimental work of fast pyrolysis for different kinds of biomass in a fluidized bed reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown RC (2003) Biorenewable resources: engineering new products from agriculture. Blackwell, New Jersey

    Google Scholar 

  2. Basu P (2010) Biomass gasification and pyrolysis practical design. Elsevier, Oxford

    Google Scholar 

  3. Ranganathan R, Sai G (2016) Computational fluid dynamics modelling of biomass fast pyrolysis in fluidized bed reactor, focusing different kinetic schemes. Bioresour Technol 213:333–341. https://doi.org/10.1016/j.biortech.2016.02.042

    Article  CAS  Google Scholar 

  4. Sembiring KC, Rinaldi N, Simanungkalit SP (2015) Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energy Procedia 65:162–169. http://creativecommons.org/licenses/by-nc-nd/4.0/. Accessed 1 May 2019

    Article  CAS  Google Scholar 

  5. Kim SW, Bon SK, Jae WR, Joon SL, Cheol JK, Dong HL, Gyung RK, Sun C (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process Technol 108:18–124. https://doi.org/10.1016/j.fuproc.2012.05.002

    Article  CAS  Google Scholar 

  6. Abdullah N, Sulaiman F, Gerhauser H (2011) Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci 22:1–24

    CAS  Google Scholar 

  7. Sukiran MA, Soh KL, Nasrin AB (2016) Production of bio-oil from fast pyrolysis of oil palm biomass using fluidised bed reactor. J Energy Technol Policy 6:52–62

    Google Scholar 

  8. Papadikis K, Gu S, Bridgwater AV (2008) CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, part a: eulerian computation of momentum transport in bubbling fluidised beds. Chem Eng Sci 63:4218–4227. https://doi.org/10.1016/j.ces.2008.05.045

    Article  CAS  Google Scholar 

  9. Papadikis K, Gu S, Bridgwater AV (2009) CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: modelling the impact of biomass shrinkage. Chem Eng J 149:417–427. https://doi.org/10.1016/j.ces.2008.11.007

    Article  CAS  Google Scholar 

  10. Papadikis K, Gu S, Bridgwater AV, Gerhauser H (2010) Computational modelling of the impact of particle size to the heat transfer coefficient between biomass particles and a fluidised bed. Fuel Process Technol 91:68–79. https://doi.org/10.1016/j.fuproc.2009.08.016

    Article  CAS  Google Scholar 

  11. Xue Q, Heindel TJ, Fox RO (2011) A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem Eng Sci 66:2440–2452. https://doi.org/10.1016/j.ces.2011.03.010

    Article  CAS  Google Scholar 

  12. Xue Q, Dalluge D, Heindel TJ, Fox RO, Brown RC (2012) Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97:757–769. https://doi.org/10.1016/j.fuel.2012.02.065

    Article  CAS  Google Scholar 

  13. Xiong Q, Aramideh S, Kong SC (2013) Modelling effects of operating conditions on biomass fast pyrolysis in bubbling fluidised bed reactors. Energy Fuel 27:5948–5956. https://doi.org/10.1021/ef4012966

    Article  CAS  Google Scholar 

  14. Xiong Q, Kong SC (2014) Modeling effects of interphase transport coefficients on biomass pyrolysis in fluidized beds. Powder Technol 262:96–105. https://doi.org/10.1016/j.powtec.2014.04.062

    Article  CAS  Google Scholar 

  15. Xiong Q, Kong SC (2016) High-resolution particle-scale simulation of biomass pyrolysis. ACS Sustain Chem Eng 4:5456–5461. https://doi.org/10.1021/acssuschemeng.6b01020

    Article  CAS  Google Scholar 

  16. Xiong Q, Yang Y, Xu F, Pan Y, Zhang J, Hong K, Lorenzini G, Wang S (2017) Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain Chem Eng 5:2783–2798. https://doi.org/10.1021/acssuschemeng.6b02634

    Article  CAS  Google Scholar 

  17. Xiong Q, Xu F, Pan Y, Yang Y, Gao Z, Shuli S, Hong K, Bertrand F, Chaouki J (2018) Major trends and roadblocks in CFD-aided process intensification of biomass pyrolysis. Chem Eng Process 127:206–212. https://doi.org/10.1016/j.cep.2018.04.005

    Article  CAS  Google Scholar 

  18. Sun S, Tian H, Zhao Y, Sun R, Zhou H (2010) Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour Technol 101:3678–3684. https://doi.org/10.1016/j.biortech.2009.12.092

    Article  CAS  Google Scholar 

  19. Yu X, Hassan M, Ocone R, Makkawi Y (2015) A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas−solid separator. II. Thermochemical performance and products. Fuel Process Technol 133:51–63. https://doi.org/10.1016/j.fuproc.2015.01.002

    Article  CAS  Google Scholar 

  20. Ashcraft RW, Heynderickx GJ, Marin GB (2012) Modeling fast biomass pyrolysis in a gas−solid vortex reactor. Chem Eng J 207:195–208. https://doi.org/10.1016/j.cej.2012.06.048

    Article  CAS  Google Scholar 

  21. Zhong H, Xiong Q, Zhu Y, Liang S, Zhang J, Niu B, Zhang X (2019) CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis. Renew Energy 141:236–245. https://doi.org/10.1016/j.renene.2019.04.006

    Article  CAS  Google Scholar 

  22. Salema AA, Afzal MT (2015) Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system. Int J Therm Sci 91:12–24. https://doi.org/10.1016/j.ijthermalsci.2015.01.003

    Article  Google Scholar 

  23. Papadikis K, Gu S, Bridgwater AV (2009) CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B. Heat, momentum and mass transport in bubbling fluidised beds. Chem Eng Sci 64:1036–1045. https://doi.org/10.1016/j.ces.2008.11.007

    Article  CAS  Google Scholar 

  24. Dupont C, Chiriac R, Gauthier G, Toche F (2014) Heat capacity measurements of various biomass types and pyrolysis residues. Fuel 115:644–651. https://doi.org/10.1016/j.fuel.2013.07.086

    Article  CAS  Google Scholar 

  25. Gupta M, Yang J, Roy C (2003) Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel 82:919–927. https://doi.org/10.1016/S0016-2361(02)00398-8

    Article  CAS  Google Scholar 

  26. Asadieraghi M, Daud WMAW (2015) In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. J Anal Appl Pyrolysis 115:379–391. https://doi.org/10.1016/j.jaap.2015.08.017

    Article  CAS  Google Scholar 

  27. Sulaiman F, Abdullah N (2011) Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy 36:2352–2359. https://doi.org/10.1016/j.energy.2010.12.067

    Article  CAS  Google Scholar 

  28. Diebold JP (1994) Global model for the pyrolysis of cellulose. Biomass Bioenergy 7:75–85. https://doi.org/10.1016/0961-9534(94)00039-V

    Article  CAS  Google Scholar 

  29. Miller RS, Bellan JA (1996) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126:97–137. https://doi.org/10.1080/00102209708935670

    Article  Google Scholar 

  30. Collier AR, Hayhurst AN, Richardson JL, Scott SA (2004) The heat transfer coefficient between a particle and a bed (packed or fluidised) of much larger particles. Chem Eng Sci 59:4613–4620. https://doi.org/10.1016/j.ces.2004.07.029

    Article  CAS  Google Scholar 

  31. Wen CY, Yu YH (1966) A generalized method for predicting the minimum fluidization velocity. AICHE J 12:610–612. https://doi.org/10.1002/aic.690120343

    Article  CAS  Google Scholar 

  32. Hilal N, Ghannam MT, Anabtawi MZ (2001) Effect of bed diameter, distributor and inserts on minimum fluidization velocity. Chem Eng Technol 24:161. https://doi.org/10.1002/1521-4125(200102)24:2%3C161::AID-CEAT161%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  33. Sanchez SL, López GD, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001

    Article  CAS  Google Scholar 

  34. Haiping Y, Rong Y, Hanping C, Dong HL, Chuguang Z (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  35. Haiping Y, Rong Y, Terence C, David TL, Hanping C, Chuguang Z (2004) Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuel 18:1814–1821. https://doi.org/10.1021/ef030193m

    Article  CAS  Google Scholar 

  36. Abdullah N, Bridgwater AV (2006) Pyrolysis liquid derived from oil palm empty fruit bunches. J Phys Sci 17:117–129

    CAS  Google Scholar 

  37. Abdullah N, Gerhauser H, Sulaiman F (2010) Fast pyrolysis of empty fruit bunches. Fuel 89:2166–2169. https://doi.org/10.1016/j.fuel.2009.12.019

    Article  CAS  Google Scholar 

  38. Westerhof RJM, Brilman DWF, Swaaij WPM, Kersten SRA (2010) Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Ind Eng Chem Res 49:1160–1168. https://doi.org/10.1021/ie900885c

    Article  CAS  Google Scholar 

  39. Salehi E, Abedi J, Harding T (2011) Bio-oil from sawdust: effect of operating parameters on the yield and quality of pyrolysis products. Energy Fuel 25:4145–4154. https://doi.org/10.1021/ef200688y

    Article  CAS  Google Scholar 

  40. Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D (2014) Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–179. https://doi.org/10.1016/j.fuel.2014.03.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Research and Development Office (RDO), Prince of Songkla University and to Associate Professor Dr. Seppo Karrila, Faculty of Science and Industrial Technology, Prince of Songkla University for valuable suggestions.

Funding

The authors acknowledge the financial support from the Higher Education Research Promotion and Thailand’s Education Hub for Southern Region of ASEAN Countries Project Office of the Higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayanoot Sangwichien.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thu, K., Reungpeerakul, T. & Sangwichien, C. Simulation of Reaction Kinetics and Heat Transfer Effects on Product Yields from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in Fluidized Bed Reactor. Bioenerg. Res. 13, 1194–1204 (2020). https://doi.org/10.1007/s12155-020-10148-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10148-1

Keywords

Navigation