Skip to main content
Log in

Evolutionary Loss of the Ability of the Photosystem I Primary Electron Donor for the Redox Interaction with Mn-Bicarbonate Complexes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The structure and functional organization of the photosystem I (PSI) reaction center (RC) donor side has a significant similarity to the reaction centers of purple bacteria (bRCs), despite the fact that they belong to different types of RCs. Moreover, the redox potential values of their primary electron donors are identical (~0.5 V). In our earlier reports [Khorobrykh et al. (2008) Phylos. Trans. R. Soc. B., 363, 1245-1251; Terentyev et al. (2011) Biochemistry (Moscow., 76, 1360-1366; Khorobrykh et al. (2018) ChemBioChem, 14, 1725-1731], we have demonstrated redox interaction of low-potential Mn2+-bicarbonate complexes with bRCs, which might have been one of the first steps in the evolutionary origin of Mn-cluster of the photosystem II water-oxidizing complex that occurred in the Archean (over 3 billion years ago). In this study, we investigated redox interactions between Mn2+-bicarbonate complexes and PSI. Such interactions were almost absent in the original PSI preparations and emerged only in preoxidized PSI preparations containing ~50% oxidized RCs. The interaction between Mn2+-bicarbonate complexes and PSI required increased Mn2+ concentrations, while its dependence on the HCO3 concentration indicated involvement of electroneutral low-potential [Mn(HCO3)2] complex in the process. Analysis of the PSI crystal structure revealed steric hindrances on the RC donor side, which could block the redox interaction between Mn2+-bicarbonate complexes and oxidized primary electron donor. Comparison of structures of RCs from the PSI and ancient RCs from heliobacteria belonging to the same type of RCs suggested that such hindrances should be absent in the primitive PSI in the Archean and allowed to explain their evolutionary origin as a consequence of PSI RCs into the united electron transport chain (ETC) of the photosynthetic membrane that was accompanied by the evolutionary loss of PSI capacity for the redox interaction with Mn2+-bicarbonate complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Equations
Equations

Similar content being viewed by others

Abbreviations

bChl:

bacteriochlorophyll

bRC:

bacterial reaction center

Chl:

chlorophyll

DCPIP:

reduced 2,6-dichlorophenolindophenol

ETC:

electron transport chain

hbRC:

heliobacterial reaction center

Pc:

plastocyanin

PSI:

photosystem I

PSII:

photosystem II

RC:

reaction center

REFERENCES

  1. Nelson, N., and Yocum, C. F. (2006) Structure and function of photosystems I and II, Annu. Rev. Plant Biol., 57, 521-565, doi: 10.1146/annurev.arplant.57.032905.105350.

    CAS  PubMed  Google Scholar 

  2. Nelson, N. (2013) Evolution of photosystem I and the control of global enthalpy in an oxidizing world, Photosynth. Res., 116, 145-151, doi: 10.1007/s11120-013-9902-6.

    CAS  PubMed  Google Scholar 

  3. Caffarri, S., Tibiletti, T., Jennings, R., and Santabarbara, S. (2014) A comparison between plant photosystem I and photosystem II architecture and functioning, Curr. Protein Pept. Sci., 15, 296-331, doi: 10.2174/1389203715666140327102218.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blankenship, R. E. (2010) Early evolution of photosynthesis, Plant Physiol., 154, 434-438, doi: 10.1104/pp.110.161687.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Allen, J. P., and Williams, J. C. (1998) Photosynthetic reaction centers, FEBS Lett., 438, 5-9, doi: 10.1016/S0014-5793(98)01245-9.

    CAS  PubMed  Google Scholar 

  6. Hohmann-Marriott, M. F., and Blankenship, R. E. (2011) Evolution of photosynthesis, Annu. Rev. Plant Biol., 62, 515-548, doi: 10.1146/annurev-arplant-042110-103811.

    CAS  PubMed  Google Scholar 

  7. Heathcote, P., Jones, M. R., and Fyfe, P. K. (2003) Type I photosynthetic reaction centres: structure and function, Philos. Trans. R. Soc. London. Ser. B Biol. Sci., 358, 231-243, doi: 10.1098/rstb.2002.1178.

    CAS  Google Scholar 

  8. Blankenship, R. E. (1992) Origin and early evolution of photosynthesis, Photosynth. Res., 33, 91-111, doi: 10.1007/BF00039173.

    CAS  PubMed  Google Scholar 

  9. Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 91, 10265-10269, doi: 10.1073/pnas.91.22.10265.

    CAS  PubMed  Google Scholar 

  10. Brettel, K., and Leibl, W. (2001) Electron transfer in photosystem I, Biochim. Biophys. Acta, 1507, 100-114, doi: 10.1016/S0005-2728(01)00202-X.

    CAS  PubMed  Google Scholar 

  11. Semenov, A. Y., Kurashov, V. N., and Mamedov, M. D. (2011) Transmembrane charge transfer in photosynthetic reaction centers: some similarities and distinctions, J. Photochem. Photobiol. B Biol., 104, 326-332, doi: 10.1016/j.jphotobiol.2011.02.004.

    CAS  Google Scholar 

  12. Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A., and Lavergne, J. (2002) Kinetics and pathways of charge recombination in photosystem II, Biochemistry, 41, 8518-8527, doi: 10.1021/bi025725p.

    CAS  PubMed  Google Scholar 

  13. Allakhverdiev, S. I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V. V., and Mimuro, M. (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls, Proc. Natl. Acad. Sci. USA, 107, 3924-3929, doi: 10.1073/pnas.0913460107.

    CAS  PubMed  Google Scholar 

  14. Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 473, 55-60, doi: 10.1038/nature09913.

    CAS  PubMed  Google Scholar 

  15. Dismukes, G. C., Klimov, V. V., Baranov, S. V., Kozlov, Y. N., DasGupta, J., and Tyryshkin, A. (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis, Proc. Natl. Acad. Sci. USA, 98, 2170-2175, doi: 10.1073/pnas.061514798.

    CAS  PubMed  Google Scholar 

  16. Khorobrykh, A. A., Terentyev, V. V., Zharmukhamedov, S. K., and Klimov, V. V. (2008) Redox interaction of Mn-bicarbonate complexes with reaction centres of purple bacteria, Philos. Trans. R. Soc. B Biol. Sci., 363, 1245-1251, doi: 10.1098/rstb.2007.2221.

    CAS  Google Scholar 

  17. Terentyev, V. V., Shkuropatov, A. Y., Shkuropatova, V. A., Shuvalov, V. A., and Klimov, V. V. (2011) Investigation of the redox interaction between Mn-bicarbonate complexes and reaction centers from Rhodobacter sphaeroides R-26, Chromatium minutissimum, and Chloroflexus aurantiacus, Biochemistry (Moscow), 76, 1360-1366, doi: 10.1134/S0006297911120091.

    CAS  Google Scholar 

  18. Khorobrykh, A., Dasgupta, J., Kolling, D. R. J., Terentyev, V., Klimov, V. V., and Dismukes, G. C. (2013) Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenic bacterial reaction centers, Chembiochem, 14, 1725-1731, doi: 10.1002/cbic.201300355.

    CAS  PubMed  Google Scholar 

  19. Terentyev, V. V., Khorobrykh, A. A., and Klimov, V. V. (2015) Photooxidation of Mn-bicarbonate complexes by reaction centers of purple bacteria as a possible stage in the evolutionary origin of the water-oxidizing complex of photosystem II, in: Photosynthesis: New Approaches to the Molecular, Cellular, and Organismal Levels (Allakhverdiev, S. I., ed.) Scrivener Publishing LLC, pp. 85-132, doi:  https://doi.org/10.1002/9781119084150.ch2.

    Book  Google Scholar 

  20. Kozlov, Y. N., and Kazakova, A. A. (1997) Changes in the redox potential and catalase activity of Mn2+ ions during formation of Mn-bicarbonate complexes, Membr. Cell Biol., 11, 115-120.

    PubMed  Google Scholar 

  21. Kozlov, Y. N., Zharmukhamedov, S. K., Tikhonov, K. G., Dasgupta, J., Kazakova, A. A., Dismukes, G. C., and Klimov, V. V. (2004) Oxidation potentials and electron donation to photosystem II of manganese complexes containing bicarbonate and carboxylate ligands, Phys. Chem. Chem. Phys., 6, 4905-4911, doi: 10.1039/b406569g.

    CAS  Google Scholar 

  22. Dasgupta, J., Tyryshkin, A. M., Kozlov, Y. N., Klimov, V. V., and Dismukes, G. C. (2006) Carbonate complexation of Mn2+ in the aqueous phase: redox behavior and ligand binding modes by electrochemistry and EPR spectroscopy, J. Phys. Chem. B, 110, 5099-5111, doi: 10.1021/jp055213v.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tikhonov, K. G., Zastrizhnaya, O. M., Kozlov, Y. N., and Klimov, V. V. (2006) Composition and catalase-like activity of Mn(II)-bicarbonate complexes, Biochemistry (Moscow), 71, 1270-1277, doi: 10.1134/S0006297906110137.

    CAS  Google Scholar 

  24. Ford, R. C., and Evans, M. C. W. (1983) Isolation of a photosystem II preparation from higher plants with highly enriched oxygen evolution activity, FEBS Lett., 160, 159-164, doi: 10.1016/0014-5793(83)80957-0.

    CAS  Google Scholar 

  25. Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta, 975, 384-394, doi: 10.1016/S0005-2728(89)80347-0.

    CAS  Google Scholar 

  26. Terentyev, V. V., Shukshina, A. K., and Shitov, A. V. (2019) Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH, Biochim. Biophys. Acta, 1860, 582-590, doi: 10.1016/j.bbabio.2019.06.003.

    CAS  Google Scholar 

  27. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38, doi: 10.1016/0263-7855(96)00018-5.

    CAS  PubMed  Google Scholar 

  28. Amunts, A., Toporik, H., Borovikova, A., and Nelson, N. (2010) Structure determination and improved model of plant photosystem I, J. Biol. Chem., 285, 3478-3486, doi: 10.1074/jbc.M109.072645.

    CAS  PubMed  Google Scholar 

  29. Melis, A. (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size, Philos. Trans. R. Soc. B Biol. Sci., 323, 397-409, doi: 10.1098/rstb.1989.0019.

    CAS  Google Scholar 

  30. Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis, Proc. Natl. Acad. Sci. USA, 95, 13319-13323, doi: 10.1073/pnas.95.22.13319.

    CAS  PubMed  Google Scholar 

  31. Shuvalov, V. A. (1976) The study of the primary photoprocesses in photosystem I of chloroplasts recombination luminescence, chlorophyll triplet state and triplet–triplet annihilation, Biochim. Biophys. Acta, 430, 113-121, doi: 10.1016/0005-2728(76)90227-9.

    CAS  PubMed  Google Scholar 

  32. Kozlov, Y. N., Tikhonov, K. G., Zastrizhnaya, O. M., and Klimov, V. V. (2010) pH-Dependence of the composition and stability of MnIII-bicarbonate complexes and its implication for redox interaction of MnII with photosystemII, J. Photochem. Photobiol. B Biol., 101, 362-366, doi: 10.1016/j.jphotobiol.2010.08.009.

    CAS  Google Scholar 

  33. Yang, X., Zhang, Y. H., Yang, Z. L., Chen, L. J., He, J. L., and Wang, R. F. (2009) pH dependence of photosynthetic behavior of plant photosystem I particles, Russ. J. Plant Physiol., 56, 599-606, doi: 10.1134/S1021443709050033.

    CAS  Google Scholar 

  34. Petrova, A., Mamedov, M., Ivanov, B., Semenov, A., and Kozuleva, M. (2018) Effect of artificial redox mediators on the photoinduced oxygen reduction by photosystem I complexes, Photosynth. Res., 137, 421-429, doi: 10.1007/s11120-018-0514-z.

    CAS  PubMed  Google Scholar 

  35. Semenov, A., Cherepanov, D., and Mamedov, M. (2008) Electrogenic reactions and dielectric properties of photosystem II, Photosynth. Res., 98, 121-130, doi: 10.1007/s11120-008-9377-z.

    CAS  PubMed  Google Scholar 

  36. Sommer, F., Drepper, F., Haehnel, W., and Hippler, M. (2004) The hydrophobic recognition site formed by residues PsaA-Trp 651 and PsaB-Trp 627 of photosystem I in chlamydomonas reinhardtii confers distinct selectivity for binding of blastocyanin and cytochrome c6, J. Biol. Chem., 279, 20009-20017, doi: 10.1074/jbc. M313986200.

    CAS  PubMed  Google Scholar 

  37. Busch, A., and Hippler, M. (2011) The structure and function of eukaryotic photosystem I, Biochim. Biophys. Acta, 1807, 864-877, doi: 10.1016/j.bbabio.2010.09.009.

    CAS  PubMed  Google Scholar 

  38. Hippler, M., Drepper, F., Farah, J., and Rochaix, J.-D. (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF, Biochemistry, 36, 6343-6349, doi: 10.1021/bi970082c.

    CAS  PubMed  Google Scholar 

  39. Gisriel, C., Sarrou, I., Ferlez, B., Golbeck, J. H., Redding, K. E., and Fromme, R. (2017) Structure of a symmetric photosynthetic reaction center–photosystem, Science, 357, 1021-1025, doi: 10.1126/science.aan5611.

    CAS  PubMed  Google Scholar 

  40. Nunn, J. F. (1998) Evolution of the atmosphere, Proc. Geol. Assoc., 109, 1-13, doi: 10.1016/S0016-7878(98)80001-1.

    CAS  PubMed  Google Scholar 

  41. Royer, D. L. (2006) CO2-forced climate thresholds during the Phanerozoic, Geochim. Cosmochim. Acta, 70, 5665-5675, doi: 10.1016/j.gca.2005.11.031.

    CAS  Google Scholar 

  42. Johnson, J. E., Webb, S. M., Thomas, K., Ono, S., Kirschvink, J. L., and Fischer, W. W. (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria, Proc. Natl. Acad. Sci. USA, 110, 11238-11243, doi: 10.1073/pnas.1305530110.

    CAS  PubMed  Google Scholar 

  43. Okita, P. M., Maynard, J. B., Spiker, E. C., and Force, E. R. (1988) Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore, Geochim. Cosmochim. Acta, 52, 2679-2685, doi: 10.1016/0016-7037(88)90036-1.

    CAS  Google Scholar 

  44. Kozuleva, M. A., and Ivanov, B. N. (2016) The mechanisms of oxygen reduction in the terminal reducing segment of the chloroplast photosynthetic electron transport chain, Plant Cell Physiol., 57, 1397-1404, doi: 10.1093/pcp/pcw035.

    CAS  PubMed  Google Scholar 

  45. Orf, G. S., Gisriel, C., and Redding, K. E. (2018) Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center, Photosynth. Res., 138, 11-37, doi: 10.1007/s11120-018-0503-2.

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was performed within the framework of the State task AAAA-A17-117030110136-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Terentyev.

Ethics declarations

This study contains no experiments with humans or animals performed by any of the authors. The authors declare no conflict of interests.

Additional information

In memory of Yuri Nikolaevich Kozlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terentyev, V., Zharmukhamedov, S. Evolutionary Loss of the Ability of the Photosystem I Primary Electron Donor for the Redox Interaction with Mn-Bicarbonate Complexes. Biochemistry Moscow 85, 697–708 (2020). https://doi.org/10.1134/S0006297920060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920060073

Keywords

Navigation