Skip to main content
Log in

Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

This article has been updated

Abstract

Cryptophyte algae belong to a special group of oxygenic photosynthetic organisms containing pigment combination unique for plastids – phycobiliproteins and chlorophyll a/c-containing antenna. Despite the progress in investigation of morphological and ecological features, as well as genome-based systematics of cryptophytes, their photosynthetic apparatus remains poorly understood. The ratio of the photosystems (PS)s I and II is unknown and information on participation of the two antennal complexes in functions of the two photosystems is inconsistent. In the present work we demonstrated for the first time that the cryptophyte alga Rhodomonas salina had the PSI to PSII ratio in thylakoid membranes equal to 1 : 4, whereas this ratio in cyanobacteria and higher plants was known to be 3 : 1 and 1 : 1, respectively. Furthermore, it was established that contrary to the case of cyanobacteria the phycobiliprotein antenna represented by phycoerythrin-545 (PE-545) in R. salina was associated only with the PSII, which indicated specific spatial organization of these protein pigments within the thylakoids that did not facilitate interaction with the PSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

  • 10 August 2020

    On p. 679 in the list of authors and affiliations instead of:

    (1) Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127726 Moscow, Russia

    (2) Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia

    (3) Institute of Fundamental Problems of Biology of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia

    (4) Kovalevski Institute of Biology of the Southern Seas, Russian Academy of Sciences, 299011 Sevastopol, Russia

    (5) Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russia

    Should read:

    (1) Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127726 Moscow, Russia

    (2) Kovalevski Institute of Biology of the Southern Seas, Russian Academy of Sciences, 299011 Sevastopol, Russia

    (3) Institute of Fundamental Problems of Biology of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia

    (4) Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia

    (5) Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russia

Abbreviations

Chl a :

chlorophyll a

Chl c :

chlorophyll c

Chl a/c-protein:

chlorophyll a/c-protein

PBS:

phycobilisome

PE-545:

phycoerythrin-545

PSI(II):

photosystem I(II)

REFERENCES

  1. Krasnova, E. D., Pantyulin, A. N., Matorin, D. N., Todorenko, D. A., Belevich, T. A., Milyutina, I. A., and Voronov, D. A. (2014) Blooming of the cryptophyte alga Rhodomonas sp. (Cryptophyta, Pyrenomodaceae) in the redox-zone of reservoirs separated from the White Sea, Mikrobiologiya, 83, 346-354, doi: 10.7868/S0026365614030100.

    CAS  Google Scholar 

  2. Mitrofanova, E. Y. (2015) Chroomonas acuta Uterm. (Cryptophyta) in the Lake Teletskoe (Altai, Russia), Turczaninowia, 18, 96-104, doi: 10.14258/turczaninowia.18.2.10.

    Google Scholar 

  3. Hoef-Emden, K., and Archibald, J. M. (2017) Cryptophyta (Cryptomonads), in Handbook of the Protists (Archibald, J. M. et al., eds.) Springer International Publishing AG 2017, 851-891, doi: https://doi.org/10.1007/978-3-319-28149-0_35.

    Book  Google Scholar 

  4. Janssen, J., and Rhiel, E. (2008) Evidence of monomeric photosystem I complexes and phosphorylation of chlorophyll a/c-binding polypeptides in Chroomonas sp. strain LT (Cryptophyceae), Intern. Microbiol., 11, 171-178, doi: 10.2436/20.1501.01.57.

    CAS  Google Scholar 

  5. Kereïche, S., Kouřil, R., Oostergetel, G. T., Fusetti, F., Boekema, E. J., Doust, A. B., Van der Weij-de Wit, C. D., and Dekker, J. P. (2008) Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24, Biochim. Biophys. Acta, 1777, 1122-1128, doi: 10.1016/j.bbabio.2008.04.045.

    PubMed  Google Scholar 

  6. Hoffman, G. E., Sanchez-Puerta, M. V. S., and Delwiche, C. F. (2011) Evolution of light-harvesting complex proteins from Chl c-containing algae, BMC Evol. Biol., 11, 101, doi: 10.1186/1471-2148-11-101.

    Google Scholar 

  7. Neilson, J. A. D., and Durnford, D. G. (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes, Photosynth. Res., 106, 57-71, doi: 10.1007/s11120-010-9576-2.

    CAS  PubMed  Google Scholar 

  8. Ingram, K., and Hiller, R. G. (1983) Isolation and characterization of a major chlorophyll a/c2 light-harvesting protein from a Chroomonas species (Cryptophyceae), Biochim. Biophys. Acta, 722, 310-319, doi: 10.1016/0005-2728(83)90078-6.

    CAS  Google Scholar 

  9. Schimek, C., Stadnichuk, I. N., Knaust, R., and Wehrmeyer, W. (1994) Detection of chlorophyll c1 and magnesium-2,4-divinylpheoporphyrin A5 monomethylester in cryptophytes, J. Phycol., 30, 621-627, doi: 10.1111/j.0022-3646.1994.00621.x.

    CAS  Google Scholar 

  10. Hill, D. R., and Rowan, K. S. (1989) The biliproteins of the cryptophyceae, Phycologia, 28, 455-463, doi: 10.2216/i0031-8884-28-4-455.1.

    Google Scholar 

  11. Glazer, A. N., and Wedemayer, G. J. (1995) Cryptomonad biliproteins: an evolutionary perspective, Photosynth. Res., 46, 93-105, doi: 10.1007/BF00020420.

    CAS  PubMed  Google Scholar 

  12. Broughton, M. J., Howe, C. J., and Hiller, R. G. (2006) Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas, Gene, 369, 72-79, doi: 10.1016/j.gene.2005.10.026.

    CAS  PubMed  Google Scholar 

  13. Kieselbach, T., Cheregi, O., Green, B. R., and Funk, C. (2018) Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities, Photosynth. Res., 135, 149-163, doi: 10.1007/s11120-017-0400-0.

    CAS  PubMed  Google Scholar 

  14. Ludwig, M., and Gibbs, S. P. (1989) Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens, J. Cell Biol., 108, 875-884, doi: 10.1083/jcb.108.3.875.

    CAS  PubMed  Google Scholar 

  15. Spear-Bernstein, L., and Miller, K. R. (1989) Unique location of the phycobiliprotein light-harvesting pigment in the cryptophyceae, J. Phycol., 25, 412-419, doi: 10.1111/j.1529-8817.1989.tb00245.x.

    CAS  Google Scholar 

  16. Mörschel, E., and Wehrmeyer, W. (1979) Elektronenmikroskopische feinstrukturanalyse von nativen biliproteidaggregaten und deren räumliche ordnung, Ber. Dtsch. Bot. Ges., 92, 393-402, doi: 10.1111/j.1438-8677.1979.tb03286.x.

    Google Scholar 

  17. Vesk, M., Dwarte, D., Fowler, S., and Hiller, R. G. (1992) Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte, Protoplasma, 170, 166-176, doi: 10.1007/BF01378791.

    Google Scholar 

  18. Haxo, F. T., and Fork, D. C. (1959) Photosynthetically active accessory pigments of cryptomonads, Nature, 184, 1051-1052, doi: 10.1038/1841051a0.

    CAS  PubMed  Google Scholar 

  19. Lichtlé, C., Duval, J. D., and Lemoine, Y. (1987) Comparative biochemical, functional and ultrasructural studies of photosystem particles from a Cryptophyceae Cryptomonas rufescens: isolation of an active phycoerythrin particle, Biochim. Biophys. Acta, 894, 76-90, doi: 10.1016/0005-2728(87)90214-3.

    Google Scholar 

  20. Chen, M., Li, S. H., and Sun, L. (2007) A novel phycocyanin–Chl a/c2–protein complex isolated from chloroplasts of Chroomonas placoidea, Chinese Chem. Lett., 18, 1374-1378, doi: 10.1016/j.cclet.2007.09.025.

    CAS  Google Scholar 

  21. MacColl, R., and Berns, D. S. (1978) Energy transfer studies on cryptomonad biliproteins, Photochem. Photobiol., 27, 343-349, doi: 10.1111/j.1751-1097.1978.tb07610.x.

    CAS  Google Scholar 

  22. Mimuro, M., Tamai, N., Murakami, A., Watanabe, M., Erata, M., Watanabe, M. M., Tokutomi, M., and Yamazaki, T. (1998) Multiple pathways of excitation energy flow in the photosynthetic pigment system of a cryptophyte, Cryptomonas sp. (CR-1), Phycol. Res., 46, 155-164, doi: 10.1111/j.1440-1835.1998.tb00108.x.

    CAS  Google Scholar 

  23. Bruce, D., Biggins, J., Steiner, T., and Thewalt, M. (1986) Excitation energy transfer in the cryptophytes. Fluorescence excitation spectra and picosecond time-resolved emission spectra of intact algae at 77 K, Photochem. Photobiol., 44, 519-525, doi: 10.1111/j.1751-1097.1986.tb04702.x.

    CAS  Google Scholar 

  24. Lichtlé, C., Jupin, C. H., and Duval, I. C. (1980) Energy transfer from PSII to PSI in Cryptomonas rufescens (Cryptophyceae), Biochim. Biophys. Acta, 591, 104-112, doi: 10.1016/0005-2728(80)90224-8.

    PubMed  Google Scholar 

  25. Van der Weij-de Wit, C. D., Doust, A. B., Van Stokkum, I. H. M., Dekker, J. P., Wilk, K. E., Curmi, P. M. G., Scholes, G. D., and Van Grondelle, R. (2006) How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells, J. Phys. Chem. B, 110, 25066-25073, doi: 10.1021/jp061546w.

    CAS  PubMed  Google Scholar 

  26. Schreiber, U., Klughammer, C., and Neubauer, C. (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system, Z. Naturforsch., 43, 686-698, doi: 10.1515/znc-1988-9-1010.

    CAS  Google Scholar 

  27. Boichenko, V. A. (1998) Action spectra and functional antenna sizes of photosystems I and II in relation to the thylakoid membrane organization and pigment composition, Photosynth. Res., 58, 163-174, doi: 10.1023/A:1006187425058.

    CAS  Google Scholar 

  28. Rakhimberdieva, M., Boichenko, V., Karapetyan, N., and Stadnichuk, I. (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis, Biochemistry, 40, 15780-15788, doi: 10.1021/bi010009t.

    CAS  PubMed  Google Scholar 

  29. MacColl, R., Berns, D. S., and Gibbons, O. (1976) Characterization of cryptomonad phycoerythrin and phycocyanin, Arch. Biochem. Biophys., 177, 265-275, doi: 10.1016/0003-9861(76)90436-7.

    CAS  PubMed  Google Scholar 

  30. Rögner, M., Mühlenhoff, U., Boekema, E. J., and Witt, H. (1990) Mono-, di- and trimeric PSI reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp.: size, shape and activity, Biochim. Biophys. Acta, 1015, 415-424, doi: 10.1016/0005-2728(90)90074-E.

    Google Scholar 

  31. Jeffrey, S. W., and Humphrey, G. F. (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen, 167, 191-194, doi: 10.1016/S0015-3796(17)30778-3.

    CAS  Google Scholar 

  32. Boichenko, V. A., Pinevich, A. V., and Stadnichuk, I. N. (2007) Association of chlorophyll a/b-binding Pcb proteins with photosystems I and II in Prochlorothrix hollandica, Biochim. Biophys. Acta, 1767, 801-806, doi: 10.1016/j.bbabio.2006.11.001.

    CAS  PubMed  Google Scholar 

  33. Doust, A. B., van Stokkum, I. H. M., Larsen, D. S., Wilk, K. E., Curmi, P. M. G., van Grondelle, R., and Scholes, G. D. (2005) Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis, J. Phys. Chem. B, 109, 14219-14226, doi: 10.1021/jp051173j.

    CAS  PubMed  Google Scholar 

  34. Van der Weij-De Wit, C. D., Doust, A. B., Van Stokkum, I. H. M., Dekker, J. P., Wilk, K. E., Curmi, P. M. G., and Van Grondelle, R. (2008) Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte Chroomonas CCMP270 cells, Biophys. J., 94, 2423-2433, doi: 10.1529/biophysj.107.113993.

    CAS  PubMed  Google Scholar 

  35. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauß, N. (2001) Three dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909-917, doi: 10.1038/35082000.

    CAS  PubMed  Google Scholar 

  36. Ferreira, K. N, Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831-1838, doi: 10.1126/science.1093087.

    CAS  PubMed  Google Scholar 

  37. Kühlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Atomic model of plant light-harvesting complex by electron crystallography, Nature, 367, 614-621, doi: 10.1038/367614a0.

    PubMed  Google Scholar 

  38. Cunningham, B. R., Greenwold, M. J., Lachenmyer, E. M., Heidenreich, K. M., Davis, A. C., Dudycha, J. L., and Richardson, T. L. (2019) Light capture and pigment diversity in marine and freshwater cryptophytes, J. Phycol., 55, 552-564, doi: 10.1111/jpy.12816.

    CAS  PubMed  Google Scholar 

  39. Doust, A. B., Wilk, K. E., Curmi, P. M. G., and Scholes, G. D. (2006) The photophysics of cryptophyte light-harvesting, J. Photochem. Photobiol. A, 184, 1-17, doi: 10.1016/j.jphotochem.2006.06.006.

    CAS  Google Scholar 

  40. Yokono, M., and Akimoto, S. (2018) Energy transfer and distribution in photosystem super/megacomplexes of plants, Curr. Opin. Biotechnol., 54, 50-56, doi: 10.1016/j.copbio.2018.01.001.

    CAS  PubMed  Google Scholar 

  41. Mirkovic, T., Wilk, K. E., Curmi, P. M. G., and Scholes, G. D. (2009) Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24, Photosynth. Res., 100, 7-17, doi: 10.1007/s11120-009-9412-8.

    CAS  PubMed  Google Scholar 

  42. Kuthanová Trsková, E., Bína, D., Santabarbara, S., Sobotka, R., Kana, R., and Belgio, E. (2019) Isolation and characterization of CAC antenna proteins and photosystem I supercomplex from the cryptophytic alga Rhodomonas salina, Physiol. Plant., 166, 309-319, doi: 10.1111/ppl.12928.

    PubMed  Google Scholar 

  43. Dann, M., and Leister, D. (2019) Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow, Nat. Commun., 10, 5299, doi: 10.1038/s41467-019-13223-0.

    Google Scholar 

Download references

Funding

The work was financially supported in part of T. M. Novikova and G. S. Miniuk by the State Budget Project No. 0828-2020-0004 (AAAA-A18-118021350003-6), Institute of the Southern Seas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Stadnichuk.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichuk, I., Novikova, T., Miniuk, G. et al. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina. Biochemistry Moscow 85, 679–688 (2020). https://doi.org/10.1134/S000629792006005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792006005X

Keywords

Navigation