Skip to main content
Log in

Ommochromes from the Compound Eyes of Insects: Physicochemical Properties and Antioxidant Activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The objective of this study was screening of ommochromes from the compound eyes of insects and comparison of their antioxidant properties. Ommochromes were isolated in preparative quantities from insects of five different families: Stratiomyidae, Sphingidae, Blaberidae, Acrididae, and Tenebrionidae. The yield of ommochromes (dry pigment weight) was 0.9-5.4% of tissue wet weight depending on the insect species. Isolated pigments were analyzed by high-performance liquid chromatography and represented a mixture of several ommochromes of the ommatin series. The isolated ommochromes displayed a pronounced fluorescence with the emission maxima at 435-450 nm and 520-535 nm; furthermore, the emission intensity increased significantly upon ommochrome oxidation with hydrogen peroxide. The ommochromes produced a stable EPR signal consisting of a singlet line with g = 2.0045-2.0048, width of 1.20-1.27 mT, and high concentration of paramagnetic centers (> 1017 spin/g dry weight). All the investigated ommochromes demonstrated high antiradical activity measured from the degree of chemiluminescence quenching in a model system containing luminol, hemoglobin, and hydrogen peroxide. The ommochromes strongly inhibited peroxidation of the photoreceptor cell outer segments induced by visible light in the presence of lipofuscin granules from the human retinal pigment epithelium, as well as suppressed iron/ascorbate-mediated lipid peroxidation. The obtained results are important for understanding the biological functions of ommochromes in invertebrates and identifying invertebrate species that could be used as efficient sources of ommochromes for pharmacological preparations to prevent and treat pathologies associated with the oxidative stress development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Table.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

EPR:

electron paramagnetic resonance

HPLC:

high performance liquid chromatography

TBA:

thiobarbituric acid

REFERENCES

  1. Butenandt, A., and Schafer, W. (1962) Recent Progress in the Chemistry of Natural and Synthetic Coloring Matters and Related Fields (Gore, T. S., Joshi, B. S., Sunthankar, S. V., and Tilak, B. D., eds.) Academic Press, NY, USA, pp. 13-34, doi: https://doi.org/10.1177/004051756303300710.

    Book  Google Scholar 

  2. Figon, F., and Casas, J. (2019) Ommochromes in invertebrates: biochemistry and cell biology, Biol. Rev. Camb. Philos. Soc., 94, 156-183, doi: 10.1111/brv.12441.

    Article  Google Scholar 

  3. Riou, M., and Christides, J.-P. (2010) Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC, J. Chem. Ecol., 36, 412-423, doi: 10.1007/s10886-010-9765-7.

    Article  CAS  Google Scholar 

  4. Stavenga, D. G., Leertouwer, H. L., and Wilts, B. D. (2014) Coloration principles of nymphaline butterflies – thin films, melanin, ommochromes and wing scale stacking, J. Exp. Biol., 217, 2171-2180, doi: 10.1242/jeb.098673.

    Article  Google Scholar 

  5. Panettieri, S., Gjinaj, E., John, G., and Lohman, D. J. (2018) Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra, PLoS One, 13, e0202465, doi: 10.1371/journal.pone.0202465.

    Article  Google Scholar 

  6. Dontsov, A. E., Fedorovich, I. B., Lindström, M., and Ostrovsky, M. A. (1999) Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance, J. Compar. Physiol. B, 169, 157-164, doi: 10.1007/s003600050206.

    Article  CAS  Google Scholar 

  7. Gribakin, F. G. (1981) Mechanisms of Photoreception in Insects, Nauka, Leningrad, p. 214.

    Google Scholar 

  8. Ostrovsky, M. A., Zak, P. P., and Dontsov, A. E. (2018) Vertebrate eye melanosomes and invertebrate eye ommochromes as screening cell organelles, Biol. Bul. Russ. Acad. Sci., 45, 570-579, doi: 10.1134/S0002332918060103.

    Article  Google Scholar 

  9. Ostrovsky, M. A., Sakina, N. L., and Dontsov, A. E. (1987) An antioxidative role of ocular screening pigments, Vis. Res., 27, 893-899, doi: 10.1016/0042-6989(87)90005-8.

    Article  CAS  Google Scholar 

  10. Insausti, T. C., LeGall, M., and Lazzari, C. R. (2013) Oxidative stress, photodamage and the role of screening pigments in insect eyes, J. Exp. Biol., 216, 3200-3207, doi: 10.1242/jeb.082818.

    Article  CAS  Google Scholar 

  11. Ostrovsky, M. A., and Dontsov, A. E. (2019) Vertebrate eye melanosomes and invertebrate eye ommochromes as antioxidant cell organelles, Biol. Bull. Russ. Acad. Sci., 46, 105-116, doi: 10.1134/S1062359019010084.

    Article  Google Scholar 

  12. Ushakova, N., Dontsov, A., Sakina, N., Bastrakov, A., and Ostrovsky, M. (2019) Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens, Biomolecules, 9, 408, doi: 10.3390/biom9090408.

    Article  Google Scholar 

  13. Stowe, S. (1983) Phagocytosis of rhabdomeral membrane by crab photoreceptors, Cell Tissue Res., 234, 463-467, doi: 10.1007/BF00213782.

    Article  CAS  Google Scholar 

  14. Feldman, T. B., Dontsov, A. E., Yakovleva, M. A., Fedorovich, I. B., Lindsrom, M., Donner, K., and Ostrovsky, M. A. (2008) Comparison of antioxidant systems in the eyes of two Mysis relicta (Crustacea: Mysidacea) populations, with different light damage resistance, Sens. Sist., 22, 309-316.

    Google Scholar 

  15. Romero, Y., and Martinez, A. (2015) Antiradical capacity of ommochromes, J. Mol. Model., 21, 220, doi: 10.1007/s00894-015-2773-3.

    Article  Google Scholar 

  16. Zhuravlev, A. V., Zakharov, G. A., Shchegolev, B. F., and Savvateeva-Popova, E. V. (2016) Antioxidant properties of kynurenines: density functional theory calculations, PLoS Comput. Biol., 12, e1005213, doi: 10.1371/journal.pcbi.1005213.

    Article  Google Scholar 

  17. Farmer, L. A., Haidasz, E. A., Griesser, M., and Pratt, D. A. (2017) Phenoxazine: a privileged scaffold for radical-trapping antioxidants, J. Org. Chem., 82, 10523-10536, doi: 10.1021/acs.joc.7b02025.

    Article  CAS  Google Scholar 

  18. Egorov, S. Yu., Krasnovsky, A. A., Dontsov, A. E., and Ostrovsky, M. A. (1987) Quenching of singlet molecular oxygen by screening pigments – melanins and ommochromes, Biofizika, 32, 685-687.

    CAS  PubMed  Google Scholar 

  19. Egorov, S. Yu., Babizhaev, M. A., Krasnovsky, A. A., and Shvedova, A. A. (1987) Photosensitized generation of singlet molecular oxygen be endogenous photosensitizers from human eye lens, Biofizika, 32, 169-171.

    CAS  PubMed  Google Scholar 

  20. Snytnikova, O. A., Sherin, P. S., Kopylova, L. V., and Tsentralovich, Yu. P. (2007) Kinetics and mechanism of reactions of photoexcited kynurenine with some natural compounds, Russ. Chem. Bull., 56, 732-738, doi: 10.1007/s11172-007-0109-x.

    Article  CAS  Google Scholar 

  21. Tsentalovich, Y. P., Snytnikova, O. A., Sherin, P. S., and Forbes, M. D. (2005) Photochemistry of kynurenine, a tryptophan metabolite: properties of the triplet state, J. Phys. Chem. A, 109, 3565-3568, doi: 10.1021/jp045142k.

    Article  CAS  Google Scholar 

  22. Dontsov, A. E., Ushakova, N. A., Sadykova, V. S., and Bastrakov, A. I. (2020) Ommochromes from Hermetia illucens: isolation, investigation of antioxidant characteristics and antimicrobial activity, Appl. Biochem. Microbiol., 56, 91-95, doi: 10.1134/S0003683820010044.

    Article  CAS  Google Scholar 

  23. Smirnov, L. D., Kuznetsov, Yu. V., Proskuryakov, S. Ya., Skvortsov, V. G., Nosko, T. N., and Dontsov, A. E. (2011) Antiradical and NO-inhibiting activity of β-hydroxy(ethoxy) derivatives of nitrous heterocycles, Biofizika, 56, 276-280, doi: 10.1134/S000635091102028X.

    Google Scholar 

  24. Dontsov, A. E., Sakina, N. L., and Ostrovsky, M. A. (2017) Loss of melanin by retinal pigment epithelium cells is associated with its oxidative destruction in melanolipofuscin granules, Biochemistry (Moscow), 82, 916-924, doi: 10.1134/S0006297917080065.

    Article  CAS  Google Scholar 

  25. Mc Dowell, J. H. (1993) Preparing rod outer segment membranes, regenerating rhodopsin, and determining rhodopsin concentration, in: Methods in Neurosciences (Hargrave, P. A., ed.) Acad. Press, New York, 15, pp. 123-130, doi: https://doi.org/10.1016/B978-0-12-185279-5.50013-3.

    Book  Google Scholar 

  26. Li, J., Berntsen, B. T., and James, A. A. (1999) Oxidation of 3-hydroxykynurenine to produce xanthommatin for eye pigmentation: a major branch pathway of tryptophan catabolism during pupal development in the yellow fever mosquito, Aedes aegypti, Bioch. Mol. Biol., 29, 329-338, doi: 10.1016/s0965-1748(99)00007-7.

    CAS  Google Scholar 

  27. Teselkin, Yu. Yu., Babenkova, I. V., Lyubitsky, O. B., Klebanov, G. I., and Vladimirov, Yu. A. (1997) The measurement of antioxidant activity of blood plasma by the hemoglobin – hydrogen peroxide – luminol system, Vopr. Med. Khim., 43, 87-92.

    CAS  Google Scholar 

  28. Ottolenghi, A. (1959) Interaction of ascorbic acid and mitochondrial lipids, Arch. Biochem. Biophys., 7, 355-363, doi: 10.1016/0003-9861(59)90414-X.

    Article  Google Scholar 

  29. Figon, F., Munsch, T., Croix, C., Viaud-Massuard, M.-C., Lanoue, F., and Casas, J. (2019) Biological identification and localization of uncyclized xanthommatin, a key intermediate in ommochrome biosynthesis: an in vitro-in vivo study, bioRxiv Preprint, doi: 10.1101/666529.

  30. Martel, R. R., and Law, J. H. (1991) Purification and properties of an ommochrome-binding protein from the hemolymph of the tobacco hornworm, Manduca sexta, J. Biol. Chem., 266, 21392-21398.

    CAS  PubMed  Google Scholar 

  31. Bolton, J. R. (1972) Experimental aspects of biological electron spin resonance studies, in Biological Application of Electron Spin Resonance (Swartz, H. M., Bolton, J. R., and Borg, D. C., eds.) Wiley (Interscience), N. Y., USA, p. 11.

    Google Scholar 

  32. Lhoste, J.-M., Haug, A., and Ptak, M. (1966) Electron paramagnetic resonance studies of photoselected triplet molecules. I. Phenoxazine, J. Chem. Phys., 44, 648-654, doi: 10.1063/1.1726739.

    Article  CAS  Google Scholar 

  33. Bolognese, A., Bonomo, R. P., Chillemi, R., and Sciuto, S. (1990) Oxidation of 3-hydroxykynurenine. An EPR investigation, J. Heterocyclic Chem., 27, 2207-2208, doi: 10.1002/jhet.5570270762.

    Article  CAS  Google Scholar 

  34. Ephrussi, B., and Herold, J. L. (1944) Studies of eye pigments of drosophila. I. Methods of extraction and quantitative estimation of the pigment components, Genetics, 39, 148-175.

    Google Scholar 

  35. Dontsov, A. E., Koromyslova, A. D., Kuznetsov, Yu. V., Sakina, N. L., and Ostrovsky, M. A. (2014) Antiradical and photoprotective activity of oxibiol – a novel water-soluble heteroaromatic antioxidant, Russ. Chem. Bull., 63, 1159-1163, doi: 10.1007/s11172-014-0565-z.

    Article  CAS  Google Scholar 

  36. Becker, E. (1942) On the properties, distribution and the genetic developmental physiological significance of the pigments of the ommatin and ommin group (ommochromes) in arthropods, Mol. Gener. Genet., 80, 157-204, doi: 10.1007/BF01741981.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project No. 19-04-00411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ostrovsky.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The authors declare no conflict of interest in financial or any other sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dontsov, A., Sakina, N., Yakovleva, M. et al. Ommochromes from the Compound Eyes of Insects: Physicochemical Properties and Antioxidant Activity. Biochemistry Moscow 85, 668–678 (2020). https://doi.org/10.1134/S0006297920060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920060048

Keywords

Navigation