Skip to main content
Log in

Manipulating Cellular Energetics to Slow Aging of Tissues and Organs

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Up to now numerous studies in the field of gerontology have been published. Nevertheless, a well-known food restriction remains the most reliable and efficient way of lifespan extension. Physical activity is also a well-documented anti-aging intervention being especially efficient in slowing down the age-associated decline of skeletal muscle mass. In this review we focus on the molecular mechanisms of the effect of physical exercise on muscle tissues. We also discuss the possibilities of pharmacological extension of this effect to the rest of the tissues. During the exercise, the level of ATP decreases triggering activation of AMP-dependent protein kinase (AMPK). This kinase stimulates antioxidant potential of the cells and their mitochondrial respiratory capacity. The exercise also induces mild oxidative stress, which, in turn, mediates the stimulation via hormetic response. Furthermore, during the exercise cells generate activators of mammalian target of rapamycin (mTOR). The intracellular ATP level increases during the rest periods between exercises thus promoting mTOR activation. Therefore, regular exercise intermittently activates anti-oxidant defenses and mitochondrial biogenesis (via AMPK and the hormetic response) of the muscle tissue, as well as its proliferative potential (via mTOR), which, in turn, impedes the age-dependent muscle atrophy. Thus, the intermittent treatment with activators of (i) AMPK combined with the inducers of hormetic response and of (ii) mTOR might partly mimic the effects of physical exercise. Importantly, pharmacological activation of AMPK takes place in the absence of ATP level decrease. The use of uncouplers of respiration and oxidative phosphorylation at the phase of AMPK activation could also prevent negative consequences of the cellular hyper-energization. It is believed that the decline of both antioxidant and proliferative potentials of the cells causes the age-dependent decline of multiple tissues, rather than only the muscular one. We argue that the approach above is applicable for the majority of tissues in an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure.

Similar content being viewed by others

Abbreviations

AICAR:

5-aminoimidazole-4-carboxamide ribonucleotide

AMPK:

AMP-dependent protein kinase

GH:

growth hormone

IGF1:

insulin-like growth factor 1

MGF:

muscle growth factor

mTOR:

mammalian target of rapamycin

ROS:

reactive oxygen species

REFERENCES

  1. Qian, M., and Liu, B. (2018) Pharmaceutical intervention of aging, Adv. Exp. Med. Biol., 1086, 235-254, doi: 10.1007/978-981-13-1117-8_15.

    CAS  PubMed  Google Scholar 

  2. Mercken, E. M., Carboneau, B. A., Krzysik-Walker, S. M., and de Cabo, R. (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics, Ageing Res. Rev., 11, 390-398, doi: 10.1016/j.arr.2011.11.005.

    PubMed  Google Scholar 

  3. Palliyaguru, D. L., Moats, J. M., Di Germanio, C., Bernier, M., and de Cabo, R. (2019) Frailty index as a biomarker of lifespan and healthspan: focus on pharmacological interventions, Mech. Ageing Dev., 180, 42-38, doi: 10.1016/j.mad.2019.03.005.

    PubMed  PubMed Central  Google Scholar 

  4. Martel, J., Ojcius, D. M., Ko, Y.-F., Chang, C.-J., and Young, J. D. (2019) Antiaging effects of bioactive molecules isolated from plants and fungi, Med. Res. Rev., 39, 1515-1552, doi: 10.1002/med.21559.

    CAS  PubMed  Google Scholar 

  5. Fontana, L., Partridge, L., and Longo, V. D. (2010) Extending healthy life span – from yeast to humans, Science, 328, 321-326, doi: 10.1126/science.1172539.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mulvey, L., Sinclair, A., and Selman, C. (2014) Lifespan modulation in mice and the confounding effects of genetic background, J. Genet. Genomics, 41, 497-503, doi: 10.1016/j.jgg.2014.06.002.

    PubMed  PubMed Central  Google Scholar 

  7. Holloszy, J. O. (1998) Longevity of exercising male rats: effect of an antioxidant supplemented diet, Mech. Ageing Dev., 100, 211-219, doi: 10.1016/s0047-6374(97)00140-1.

    CAS  PubMed  Google Scholar 

  8. Prado, C. M., Purcell, S. A., Alish, C., Pereira, S. L., Deutz, N. E., Heyland, D. K., Goodpaster, B. H., Tappenden, K. A., and Heymsfield, S. B. (2018) Implications of low muscle mass across the continuum of care: a narrative review, Ann. Med., 50, 675-693, doi: 10.1080/07853890.2018.1511918.

    PubMed  PubMed Central  Google Scholar 

  9. Distefano, G., and Goodpaster, B. H. (2018) Effects of exercise and aging on skeletal muscle, Cold Spring Harb. Perspect. Med., 8, doi: 10.1101/cshperspect.a029785.

    Google Scholar 

  10. Hernández-Álvarez, D., Mena-Montes, B., Toledo-Pérez, R., PedrazaVázquez, G., López-Cervantes, S. P., Morales-Salazar, A., Hernández-Cruz, E., Lazzarini-Lechuga, R., Vázquez-Cárdenas, R. R., Vilchis-DeLaRosa, S., Posadas-Rodríguez, P., Santín-Márquez, R., Rosas-Carrasco, O., Ibañez-Contreras, A., Alarcón-Aguilar, A., López-Díazguerrero, N. E., Luna-López, A., and Königsberg, M. (2019) Long-term moderate exercise combined with metformin treatment induces an hormetic response that prevents strength and muscle mass loss in old female wistar rats, Oxid. Med. Cell. Longev., 2019, 3428543, doi: 10.1155/2019/3428543.

    Google Scholar 

  11. Li, F.-H., Sun, L., Zhu, M., Li, T., Gao, H.-E., Wu, D.-S., Zhu, L., Duan, R., and Liu, T. C. (2018) Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model, Exp. Gerontol., 113, 150-162, doi: 10.1016/j.exger.2018.10.006.

    CAS  PubMed  Google Scholar 

  12. Klimova, B., Novotny, M., and Kuca, K. (2018) Anti-aging drugs – prospect of longer life? Curr. Med. Chem., 25, 1946-1953, doi: 10.2174/0929867325666171129215251.

    CAS  PubMed  Google Scholar 

  13. Carmona, J. J., and Michan, S. (2016) Biology of healthy aging and longevity, Rev. Invest. Clin., 68, 7-16.

    CAS  PubMed  Google Scholar 

  14. Martinez-Lopez, N., Tarabra, E., Toledo, M., Garcia-Macia, M., Sahu, S., Coletto, L., Batista-Gonzalez, A., Barzilai, N., Pessin, J. E., Schwartz, G. J., Kersten, S., and Singh, R. (2017) System-wide benefits of intermeal fasting by autophagy, Cell Metab., 26, 856-871, doi: 10.1016/j.cmet.2017.09.020.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamshed, H., Beyl, R. A., Della Manna, D. L., Yang, E. S., Ravussin, E., and Peterson, C. M. (2019) Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans, Nutrients, 11, doi: 10.3390/nu11061234.

    Google Scholar 

  16. Hawley, J. A., and Holloszy, J. O. (2009) Exercise: it’s the real thing! Nutr. Rev., 67, 172-178, doi: 10.1111/j.1753-4887.2009.00185.x.

    PubMed  Google Scholar 

  17. Knorre, D. A., and Severin, F. F. (2016) Uncouplers of oxidation and phosphorylation as antiaging compounds, Biochemistry (Moscow), 81, 1438-1444, doi: 10.1134/S0006297916120051.

    CAS  Google Scholar 

  18. Espinosa, A., Henríquez-Olguín, C., and Jaimovich, E. (2016) Reactive oxygen species and calcium signals in skeletal muscle: a crosstalk involved in both normal signaling and disease, Cell Calcium, 60, 172-179, doi: 10.1016/j.ceca.2016.02.010.

    CAS  PubMed  Google Scholar 

  19. Ferreira, L. F., and Laitano, O. (2016) Regulation of NADPH oxidases in skeletal muscle, Free Radic. Biol. Med., 98, 18-28, doi: 10.1016/j.freeradbiomed.2016.05.011.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ji, L. L., Kang, C., and Zhang, Y. (2016) Exercise-induced hormesis and skeletal muscle health, Free Radic. Biol. Med., 98, 113-22, doi: 10.1016/j.freeradbiomed.2016.02.025.

    CAS  PubMed  Google Scholar 

  21. Musci, R. V., Hamilton, K. L., and Linden, M. A. (2019) Exercise-induced mitohormesis for the maintenance of skeletal muscle and healthspan extension, Sports (Basel), 7, doi: 10.3390/sports7070170.

    Google Scholar 

  22. Webb, R., Hughes, M. G., Thomas, A. W., and Morris, K. (2017) The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses, Antioxidants (Basel), 6, doi: 10.3390/antiox6030063.

    Google Scholar 

  23. Merry, T. L., and Ristow, M. (2016) Mitohormesis in exercise training, Free Radic. Biol. Med., 98, 123-130, doi: 10.1016/j.freeradbiomed.2015.11.032.

    CAS  PubMed  Google Scholar 

  24. Ferrer, A., Caelles, C., Massot, N., and Hegardt, F. G. (1985) Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate, Biochem. Biophys. Res. Commun., 132, 497-504, doi: 10.1016/0006-291x(85)91161-1.

    CAS  PubMed  Google Scholar 

  25. Carling, D., Clarke, P. R., Zammit, V. A., and Hardie, D. G. (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities, Eur. J. Biochem., 186, 129-136, doi: 10.1111/j.1432-1033.1989.tb15186.x.

    CAS  PubMed  Google Scholar 

  26. Hardie, D. G., and Carling, D. (1997) The AMP-activated protein kinase – fuel gauge of the mammalian cell? Eur. J. Biochem., 246, 259-273, doi: 10.1111/j.1432-1033.1997.00259.x.

    CAS  PubMed  Google Scholar 

  27. Hardie, D. G. (2011) Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism, Proc. Nutr. Soc., 70, 92-99, doi: 10.1017/S0029665110003915.

    CAS  PubMed  Google Scholar 

  28. Guerrieri, D., Moon, H. Y., and van Praag, H. (2017) Exercise in a pill: the latest on exercise-mimetics, Brain Plast., 2, 153-169, doi: 10.3233/BPL-160043.

    PubMed  PubMed Central  Google Scholar 

  29. Vilchinskaya, N. A., Krivoi, I. I., and Shenkman, B. S. (2018) AMP-activated protein kinase as a key trigger for the disuse-induced skeletal muscle remodeling, Int. J. Mol. Sci., 19, doi: 10.3390/ijms19113558.

    Google Scholar 

  30. Bodur, C., Karakas, B., Timucin, A. C., Tezil, T., and Basaga, H. (2016) AMP-activated protein kinase couples 3-bromopyruvate-induced energy depletion to apoptosis via activation of FoxO3a and upregulation of proapoptotic Bcl-2 proteins, Mol. Carcinogen., 55, 1584-1597, doi: 10.1002/mc.22411.

    CAS  Google Scholar 

  31. Shin, S., Buel, G. R., Wolgamott, L., Plas, D. R., Asara, J. M., Blenis, J., and Yoon, S. O. (2015) ERK2 mediates metabolic stress response to regulate cell fate, Mol. Cell, 59, 382-398, doi: 10.1016/j.molcel.2015.06.020.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, D. R., Galluzzi, L., and Kroemer, G. (2014) Cell biology. Metabolic control of cell death, Science, 345, 1250256, doi: 10.1126/science.1250256.

    Google Scholar 

  33. Su, K.-H., Dai, S., Tang, Z., Xu, M., and Dai, C. (2019) Heat shock factor 1 is a direct antagonist of AMP-activated protein kinase, Mol. Cell, 76, 546-561, doi: 10.1016/j.molcel.2019.08.021.

    CAS  PubMed  Google Scholar 

  34. Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., and Stewart, C. E. (2015) Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake, Aging Cell, 14, 511-523, doi: 10.1111/acel.12342.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomson, D. M. (2018) The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration, Int. J. Mol. Sci., 19, doi: 10.3390/ijms19103125.

    Google Scholar 

  36. Ost, M., Coleman, V., Kasch, J., and Klaus, S. (2016) Regulation of myokine expression: role of exercise and cellular stress, Free Radic. Biol. Med., 98, 78-89, doi: 10.1016/j.freeradbiomed.2016.02.018.

    CAS  PubMed  Google Scholar 

  37. Eckel, J. (2019) Myokines in metabolic homeostasis and diabetes, Diabetologia, 62, 1523-1538, doi: 10.1007/s00125-019-4927-9.

    CAS  PubMed  Google Scholar 

  38. Graf, C., and Ferrari, N. (2019) Metabolic health – the role of adipo-myokines, Int. J. Mol. Sci., 20, doi: 10.3390/ijms20246159.

    Google Scholar 

  39. Zhang, M., Pan, K., Liu, Q., Zhou, X., Jiang, T., and Li, Y. (2016) Growth differentiation factor 15 may protect the myocardium from no-reflow by inhibiting the inflammatory-like response that predominantly involves neutrophil infiltration, Mol. Med. Rep., 13, 623-362, doi: 10.3892/mmr.2015.4573.

    CAS  PubMed  Google Scholar 

  40. Zhang, Y., Moszczynski, L. A., Liu, Q., Jiang, J., Zhao, D., Quan, D., Mele, T., McAlister, V., Jevnikar, A., Baek, S. J., Liu, K., and Zheng, X. (2017) Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling, Oncotarget, 8, 36531-3644, doi: 10.18632/oncotarget.16607.

    PubMed  PubMed Central  Google Scholar 

  41. Lerner, L., Tao, J., Liu, Q., Nicoletti, R., Feng, B., Krieger, B., Mazsa, E., Siddiquee, Z., Wang, R., Huang, L., Shen, L., Lin, J., Vigano, A., Chiu, M. I., Weng, Z., Winston, W., Weiler, S., and Gyuris, J. (2016) MAP3K11/GDF15 axis is a critical driver of cancer cachexia, J. Cachexia Sarcopenia Muscle, 7, 467-482, doi: 10.1002/jcsm.12077.

    PubMed  Google Scholar 

  42. Jones, J. E., Cadena, S. M., Gong, C., Wang, X., Chen, Z., Wang, S. X., Vickers, C., Chen, H., Lach-Trifilieff, E., Hadcock, J. R., and Glass, D. J. (2018) Supraphysiologic administration of GDF11 induces Cachexia in part by upregulating GDF15, Cell Rep., 22, 1522-1530, doi: 10.1016/j.celrep.2018.01.044.

    CAS  PubMed  Google Scholar 

  43. Bartke, A., and Darcy, J. (2017) GH and ageing: pitfalls and new insights, Best Pract. Res. Clin. Endocrinol. Metab., 31, 113-125, doi: 10.1016/j.beem.2017.02.005.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rudman, D., Feller, A. G., Nagraj, H. S., Gergans, G. A., Lalitha, P. Y., Goldberg, A. F., Schlenker, R. A., Cohn, L., Rudman, I. W., and Mattson, D. E. (1990) Effects of human growth hormone in men over 60 years old, N. Engl. J. Med., 323, 1-6, doi: 10.1056/NEJM199007053230101.

    CAS  PubMed  Google Scholar 

  45. Sattler, F. R. (2013) Growth hormone in the aging male, Best Pract. Res. Clin. Endocrinol. Metab., 27, 541-555, doi: 10.1016/j.beem.2013.05.003.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, J., and Guan, K.-L. (2019) mTOR as a central hub of nutrient signalling and cell growth, Nat. Cell Biol., 21, 63-71, doi: 10.1038/s41556-018-0205-1.

    CAS  PubMed  Google Scholar 

  47. Weihrauch, M., and Handschin, C. (2018) Pharmacological targeting of exercise adaptations in skeletal muscle: benefits and pitfalls, Biochem. Pharmacol., 147, 211-220, doi: 10.1016/j.bcp.2017.10.006.

    CAS  PubMed  Google Scholar 

  48. Kaczka, P., Michalczyk, M. M., Jastrząb, R., Gawelczyk, M., and Kubicka, K. (2019) Mechanism of action and the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on different types of physical performance – a systematic review, J. Hum. Kinet., 68, 211-222, doi: 10.2478/hukin-2019-0070.

    PubMed  PubMed Central  Google Scholar 

  49. Cruz-Jentoft, A. J. (2018) Beta-hydroxy-beta-methyl butyrate (HMB): from experimental data to clinical evidence in sarcopenia, Curr. Protein Pept. Sci., 19, 668-672, doi: 10.2174/1389203718666170529105026.

    CAS  PubMed  Google Scholar 

  50. Vyssokikh, M. Y., Holtze, S., Averina, O. A., Lyamzaev, K. G., Panteleeva, A. A., Marey, M. V., Zinovkin, R. A., Severin, F. F., Skulachev, M. V., Fasel, N., Hildebrandt, T. B., and Skulachev, V. P. (2020) Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program, Proc. Natl. Acad. Sci. USA, 117, 6491-6501, doi: 10.1073/pnas.1916414117.

    CAS  PubMed  Google Scholar 

  51. Sokolov, S. S., Markova, O. V., Nikolaeva, K. D., Fedorov, I. A., and Severin, F. F. (2017) Triosephosphates as intermediates of the Crabtree effect, Biochemistry (Moscow), 82, 458-464, doi: 10.1134/S0006297917040071.

    CAS  Google Scholar 

  52. Chen, C., Zhou, M., Ge, Y., and Wang, X. (2020) SIRT1 and aging related signaling pathways, Mech. Ageing Dev., 187, 111215, doi: 10.1016/j.mad.2020.111215.

    Google Scholar 

  53. Santos, L., Escande, C., and Denicola, A. (2016) Potential modulation of sirtuins by oxidative stress, Oxid. Med. Cell. Longev., 2016, 9831825, doi: 10.1155/2016/9831825.

    Google Scholar 

  54. Yamaza, H., Komatsu, T., Wakita, S., Kijogi, C., Park, S., Hayashi, H., Chiba, T., Mori, R., Furuyama, T., Mori, N., and Shimokawa, I. (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction, Aging Cell, 9, 372-382, doi: 10.1111/j.1474-9726.2010.00563.x.

    CAS  PubMed  Google Scholar 

  55. Badreh, F., Joukar, S., Badavi, M., Rashno, M., and Dehesh, T. (2019) The effects of age and fasting models on blood pressure, insulin/glucose profile, and expression of longevity proteins in male rats, Rejuvenation Res., doi: 10.1089/rej.2019.2205.

  56. Rodríguez-Prados, J.-C., Través, P. G., Cuenca, J., Rico, D., Aragonés, J., Martín-Sanz, P., Cascante, M., and Boscá, L. (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation, J. Immunol., 185, 605-614, doi: 10.4049/jimmunol.0901698.

    PubMed  Google Scholar 

  57. Mann, G. E., Yudilevich, D. L., and Sobrevia, L. (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells, Physiol. Rev., 83, 183-252, doi: 10.1152/physrev.00022.2002.

    CAS  PubMed  Google Scholar 

  58. Karavaeva, I. E., Golyshev, S. A., Smirnova, E. A., Sokolov, S. S., Severin, F. F., and Knorre, D. A. (2017) Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA, J. Cell Sci., 130, 1274-1284, doi: 10.1242/jcs.197269.

    CAS  PubMed  Google Scholar 

  59. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H. G., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552-560, doi: 10.1111/j.1474-9726.2008.00407.x.

    CAS  PubMed  Google Scholar 

  60. Pelletier, A., and Coderre, L. (2007) Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes, Am. J. Physiol. Endocrinol. Metab., 292, E1325-E1332, doi: 10.1152/ajpendo.00186.2006.

    CAS  PubMed  Google Scholar 

  61. Zakharova, V. V., Pletjushkina, O. Y., Galkin, I. I., Zinovkin, R. A., Chernyak, B. V., Krysko, D. V., Bachert, C., Krysko, O., Skulachev, V. P., and Popova, E. N. (2017) Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 968-977, doi: 10.1016/j.bbadis.2017.01.024.

    CAS  PubMed  Google Scholar 

  62. Lee, Y., Heo, G., Lee, K. M., Kim, A. H., Chung, K. W., Im, E., Chung, H. Y., and Lee, J. (2017) Neuroprotective effects of 2,4-dinitrophenol in an acute model of Parkinson’s disease, Brain Res., 1663, 184-193, doi: 10.1016/j.brainres.2017.03.018.

    CAS  PubMed  Google Scholar 

  63. Kishimoto, Y., Johnson, J., Fang, W., Halpern, J., Marosi, K., Liu, D., Geisler, J. G., and Mattson, M. P. (2020) A mitochondrial uncoupler prodrug protects dopaminergic neurons and improves functional outcome in a mouse model of Parkinson’s disease, Neurobiol. Aging, 85, 123-130, doi: 10.1016/j.neurobiolaging.2019.09.011.

    CAS  PubMed  Google Scholar 

  64. Coll, A. P., Chen, M., Taskar, P., Rimmington, D., Patel, S., et al. (2020) GDF15 mediates the effects of metformin on body weight and energy balance, Nature, 578, 444-448, doi: 10.1038/s41586-019-1911-y.

    CAS  PubMed  Google Scholar 

  65. Klaus, S., and Ost, M. (2020) Mitochondrial uncoupling and longevity – a role for mitokines? Exp. Gerontol., 130, 110796, doi: 10.1016/j.exger.2019.110796.

    Google Scholar 

  66. Spiering, M. J. (2019) The mystery of metformin, J. Biol. Chem., 294, 6689-6691, doi: 10.1074/jbc.CL119.008628.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys., 180, 248-257, doi: 10.1016/0003-9861(77)90035-2.

    CAS  PubMed  Google Scholar 

  68. Mirphy, M. P. (2009) How mitochondria produce reactive oxygen species, Biochem. J., 417, 1-13, doi: 10.1042/BJ20081386.

    Google Scholar 

  69. Lenaz, G., Tioli, G., Falasca, A. I., and Genova, M. L. (2016) Complex I function in mitochondrial supercomplexes, Biochim. Biophys. Acta, 1857, 991-1000, doi: 10.1016/j.bbabio.2016.01.013.

    CAS  PubMed  Google Scholar 

  70. Hunt, P. R., Son, T. G., Wilson, M. A., Yu, Q.-S., Wood, W. H., Zhang, Y., Becker, K. G., Greig, N. H., Mattson, M. P., Camandola, S., and Wolkow, C. A. (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms, PLoS One, 6, e21922, doi: 10.1371/journal.pone.0021922.

    Google Scholar 

  71. Sakurai, H., and Ota, A. (2011) Regulation of chaperone gene expression by heat shock transcription factor in Saccharomyces cerevisiae: importance in normal cell growth, stress resistance, and longevity, FEBS Lett., 585, 2744-2748, doi: 10.1016/j.febslet.2011.07.041.

    CAS  PubMed  Google Scholar 

  72. Badave, K. D., Khan, A. A., and Rane, S. Y. (2016) Anticancer vitamin K3 analogs: a review, Anticancer Agents Med. Chem., 16, 1017-1030, doi: 10.2174/1871520616666160310143316.

    CAS  PubMed  Google Scholar 

  73. Sies, H., and Jones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., doi: 10.1038/s41580-020-0230-3.

  74. Wiel, C., Le Gal, K., Ibrahim, M. X., Jahangir, C. A., Kashif, M., Yao, H., Ziegler, D. V., Xu, X., Ghosh, T., Mondal, T., Kanduri, C., Lindahl, P., Sayin, V. I., and Bergo, M. O. (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis, Cell, 178, 330-345, doi: 10.1016/j.cell.2019.06.005.

    CAS  PubMed  Google Scholar 

  75. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, doi: 10.1134/S000629791712001X.

    CAS  Google Scholar 

  76. Isaev, N. K., Stelmashook, E. V., Genrikhs, E. E., Korshunova, G. A., Sumbatyan, N. V., Kapkaeva, M. R., and Skulachev, V. P. (2016) Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type, Rev. Neurosci., 27, 849-855, doi: 10.1515/revneuro-2016-0036.

    CAS  PubMed  Google Scholar 

  77. Baksheeva, V. E., Gancharova, O. S., Tiulina, V. V., Iomdina, E. N., Zamyatnin, A. A. Jr., Philippov, P. P., Zernii, E. Y., and Senin, I. I. (2018) Iatrogenic damage of eye tissues: current problems and possible solutions, Biochemistry (Moscow), 83, 1563-1574, doi: 10.1134/S0006297918120143.

    CAS  Google Scholar 

  78. Sies, H., Berndt, C., and Jones, D. P. (2017) Oxidative stress, Annu. Rev. Biochem., 86, 715-748, doi: 10.1146/annurev-biochem-061516-045037.

    CAS  PubMed  Google Scholar 

  79. Marinho, H. S., Real, C., Cyrne, L., Soares, H., and Antunes, F. (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors, Redox Biol., 2, 535-562, doi: 10.1016/j. redox.2014.02.006.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Borisova-Mubarakshina, M. M., Vetoshkina, D. V., and Ivanov, B. N. (2019) Antioxidant and signaling functions of the plastoquinone pool in higher plants, Physiol. Plant., 166, 181-198, doi: 10.1111/ppl.12936.

    CAS  PubMed  Google Scholar 

  81. Borisova-Mubarakshina, M. M., Naydov, I. A., and Ivanov, B. N. (2018) Oxidation of the plastoquinone pool in chloroplast thylakoid membranes by superoxide anion radicals, FEBS Lett., 592, 3221-3228, doi: 10.1002/1873-3468.13237.

    CAS  PubMed  Google Scholar 

  82. Severin, F. F., and Skulachev, V. P. (2009) Programmed cell death as a target to interrupt the aging program, Adv. Gerontol., 22, 37-48.

    CAS  PubMed  Google Scholar 

  83. NCD Countdown 2030 collaborators (2018) NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4, Lancet, 392, 1072-1088, doi: 10.1016/S0140-6736(18)31992-5.

    Google Scholar 

  84. Gong, J. B., Yu, X. W., Yi, X. R., Wang, C. H., and Tuo, X. P. (2018) Epidemiology of chronic noncommunicable diseases and evaluation of life quality in elderly, Aging Med., 1, 64-66, doi: 10.1002/agm2.12009.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project No. 19-14-50642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Severin.

Ethics declarations

This article does not contain description of studies involving humans or animals as research subjects performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S., Severin, F. Manipulating Cellular Energetics to Slow Aging of Tissues and Organs. Biochemistry Moscow 85, 651–659 (2020). https://doi.org/10.1134/S0006297920060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920060024

Keywords

Navigation