Skip to main content
Log in

Extraction of Natural Pigment Gossypol from Defatted Cottonseed Using 2-Propanol-Water Green Solvent, Its Kinetics and Thermodynamic Study

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Herein environment-friendly solvent 2-propanol-water (95:5 v/v) acidified with 0.5 M oxalic acid was utilized to extract gossypol, a naturally occurring pigment of cottonseed. This polyphenolic pigment gossypol acts as a toxin to cottonseed oil and protein during processing of cottonseed by imparting a dark colouration. The parameters affecting the solvent extraction process, such as temperature, solvent-to-seed ratio, acid concentration and contact time, were studied and optimized along with evaluation of kinetic and thermodynamic parameters. The gossypol extraction followed pseudo-second-order kinetics and the kinetics mechanism displayed the diffusion of gossypol from solid phase to the liquid phase. The extraction process was internal diffusion controlled, and internal solid diffusion was the rate controlling step. The optimum conditions for extraction of gossypol were obtained experimentally as 0.5 M oxalic acid concentration, temperature of 348 K, solvent-to-seed ratio of 15 and an extraction time of 180 min, exhibiting maximum gossypol extraction of 95.43% under these conditions. The activation energy of extraction was found out to be 6.099 kJ/mol while the gossypol extraction process was found out to be endothermic in nature, viable and increased the degree of randomness of extraction process. 2-Propanol-water solvent proved to be a potent green solvent for extraction of gossypol from cottonseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Surinder Singh, S.K.; Kansal, Sharma S.K.: Extraction of gossypol from cottonseed. Rev. Adv. Sci. Eng. 4, 301–318 (2015). https://doi.org/10.1166/rase.2015.1105

    Article  Google Scholar 

  2. Price, W.D.; Lovell, R.A.; McChesney, D.G.: Naturally occurring toxins in feedstuffs: center for veterinary medicine perspective. J. Anim. Sci. 71(9), 2556–2562 (1993)

    Article  Google Scholar 

  3. Coutinho, E.M.: Gossypol: a contraceptive for men. Contraception 65, 259–263 (2002)

    Article  Google Scholar 

  4. Pelitire, S.M.; Dowd, M.K.; Cheng, H.N.: Acidic solvent extraction of gossypol from cottonseed meal. Anim. Feed Sci. Technol. 195, 120–128 (2014). https://doi.org/10.1016/j.anifeedsci.2014.06.005

    Article  Google Scholar 

  5. Berardi, L.C.; Frampton, V.L.: Note on gossypol and its relation to color fixation in cottonseed oil. J. Am. Oil Chem. Soc. 34(8), 399–401 (1957). https://doi.org/10.1007/BF02637891

    Article  Google Scholar 

  6. Aguieiras, E.C.G.; De Barros, D.S.N.; Fernandez-lafuente, R.; Freire, D.M.G.: Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew. Energy. 130, 574–581 (2019). https://doi.org/10.1016/j.renene.2018.06.095

    Article  Google Scholar 

  7. Wedegaertner, T.; Rathore, K.: Elimination of gossypol in cottonseed will improve its utilization. Procedia Environ. Sci. 29, 124–125 (2015). https://doi.org/10.1016/j.proenv.2015.07.212

    Article  Google Scholar 

  8. Vadehra, D.V.; Kalla, N.R.; Saxena, M.; et al.: Antimicrobial activity of gossypol acetic acid. IRCS Med. Sci. 13, 10–11 (1985)

    Google Scholar 

  9. Wang, X.; Howell, C.P.; Chen, F.; Yin, J.; Jiang, Y.: Gossypol-a polyphenolic compound from cotton plant. Adv. Food Nutr. Res. 58, 215–263 (2009). https://doi.org/10.1016/S1043-4526(09)58006-0

    Article  Google Scholar 

  10. Lan, L.; Appelman, C.; Smith, A.R.; Yu, J.; Larsen, S.; Marquez, R.T.; Liu, H.; Wu, X.; Gao, P.; Roy, A.; Anbanandam, A.; Gowthaman, R.; Karanicolas, J.; De Guzman, R.N.; Rogers, S.; Aubé, J.; Ji, M.; Cohen, R.S.; Neufeld, K.L.; Xu, L.: Natural product (-)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1. Mol. Oncol. 9, 1406–1420 (2015). https://doi.org/10.1016/j.molonc.2015.03.014

    Article  Google Scholar 

  11. Zeng, Y.; Ma, J.; Xu, L.; Wu, D.: Natural product gossypol and its derivatives in precision cancer medicine. Curr. Med. Chem. (2017). https://doi.org/10.2174/0929867324666170523123655. (E pub ahead of print)

    Article  Google Scholar 

  12. Tian, X.; Ruan, J.; Huang, J.; Fang, X.; Mao, Y.; Wang, L.; Chen, X.; Yang, C.: Gossypol: phytoalexin of cotton. Sci China Life Sci 59, 122–129 (2016). https://doi.org/10.1007/s11427-016-5003-z

    Article  Google Scholar 

  13. Lyman, C.M.; Baliga, B.P.; Slay, M.W.: Reactions of proteins with gossypol. Arch. Biochem. Biophys. 84(2), 486–497 (1959). https://doi.org/10.1016/0003-9861(59)90610-1

    Article  Google Scholar 

  14. Eagle, E.; Hall, C.M.; Castillon, L.E.; Miller, C.B.: Effect of fractionation and treatment on the acute oral toxicity and on the gossypol and gossypurpurin content of cottonseed pigment glands. J. Am. Oil Chem. Soc. 27(8), 301–303 (1950). https://doi.org/10.1007/BF02649313

    Article  Google Scholar 

  15. Batson, D.M.; Thurbur, F.H.; Altschul, A.M.: The effect of screw-press and hydraulic-press processing conditions on pigment glands in cottonseed. J. Am. Oil Chem. Soc. 28(11), 468–472 (1951). https://doi.org/10.1007/BF02613062

    Article  Google Scholar 

  16. Gribbins, G.H.: The reduction of free gossypol in cottonseed by pressure cooking. J. Am. Oil Chem. Soc. 28(2), 41–45 (1951). https://doi.org/10.1007/BF02612086

    Article  Google Scholar 

  17. Thurber, F.H.; Vix, H.L.E.; Pons Jr., W.A.; Crovetto, A.J.; Knoepfler, N.B.: The effect of processing conditions on the properties of screw-press cottonseed meal and oil. J. Am. Oil Chem. Soc. 31(9), 384–388 (1954). https://doi.org/10.1007/BF02545516

    Article  Google Scholar 

  18. Smith, A.K.: Practical considerations in commercial utilization of oil seeds. J. Am. Oil Chem. Soc. 48(1), 38–42 (1971). https://doi.org/10.1007/BF02673240

    Article  Google Scholar 

  19. Vix, H.L.E.; Eaves, P.H.; Gardner Jr., H.K.; Lambou, M.G.: Degossypolised cottonseed flour-the liquid cyclone process. J. Am. Oil Chem. Soc. 48(10), 611–615 (1971). https://doi.org/10.1007/BF02544573

    Article  Google Scholar 

  20. Hron, R.J.; Abraham, G.; Kuk, M.S.; Fisher, G.S.: Acidic ethanol extraction of cottonseed. J. Am. Oil Chem. Soc. 69(9), 951–952 (1992). https://doi.org/10.1007/BF02636351

    Article  Google Scholar 

  21. Ho, Y.; Harouna-Oumarou, H.A.; Fauduet, H.; Porte, C.: Kinetics and model building of leaching of water-soluble compounds of Tilia sapwood. Sep. Purif. Technol. 45(3), 169–173 (2005). https://doi.org/10.1016/j.seppur.2005.03.007

    Article  Google Scholar 

  22. Saxena, D.K.; Sharma, S.K.; Sambi, S.S.: Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol. Polish J. Chem. Technol. 14(2), 29–34 (2012). https://doi.org/10.2478/v10026-012-0067-4

    Article  Google Scholar 

  23. Saxena, D.K.; Sharma, S.K.; Sambi, S.S.: Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol Acidified by Oxalic acid. Int. J. Sci. Res. 4(8), 1967–1971 (2015)

    Google Scholar 

  24. Li, Z.; Smith, K.H.; Stevens, G.W.: The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review. Chinese J. Chem. Eng. 24(2), 215–220 (2016). https://doi.org/10.1016/j.cjche.2015.07.021

    Article  Google Scholar 

  25. Kenar, J.A.: Reaction chemistry of gossypol and its derivatives. J. Am. Oil Chem. Soc. 83(4), 269–302 (2006). https://doi.org/10.1007/s11746-006-1203-1

    Article  Google Scholar 

  26. Vander Jagt, D.L.; Deck, L.M.; Royer, R.E.: Gossypol prototype of inhibitors targeted to dinucleotide folds. Curr. Med. Chem. 7(4), 479–498 (2000). https://doi.org/10.2174/0929867003375119

    Article  Google Scholar 

  27. Arnold, L.K.; Juhl, W.G.: The reduction of free gossypol in cottonseed flakes during solvent extraction. J. Am. Oil Chem. Soc. 32(3), 151–152 (1955). https://doi.org/10.1007/BF02640325

    Article  Google Scholar 

  28. Bressani, R.; Jarquın, R.; Elias, L.G.: Cottonseed flour, free and total gossypol, epsilon-amino lysine and biological evaluation of cottonseed meals and flours in Central America. J. Agric. Food Chem. 12(3), 278–282 (1964). https://doi.org/10.1021/jf60133a027

    Article  Google Scholar 

  29. Fernandez, S.R.; Zhang, Y.; Parsons, C.M.: Dietary formulation with cottonseed meal on a total amino acid versus a digestible amino acid basis. Poult. Sci. 74(7), 1168–1179 (1995). https://doi.org/10.3382/ps.0741168

    Article  Google Scholar 

  30. Dowd, M.K.; Pelitire, S.M.: Isolation of 6-methoxy gossypol and 6, 6’-dimethoxy gossypol from Gossypium barbadense Sea Island cotton. J. Agric. Food Chem. 54, 3265–3270 (2006)

    Article  Google Scholar 

  31. Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J.: Tools and techniques for solvent selection: green solvent selection guides. Sustain. Chem. Process. 4(7), 1–24 (2016). https://doi.org/10.1186/s40508-016-0051-z

    Article  Google Scholar 

  32. Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; Mcelroy, C.R.; Abou-shehada, S.; Dunn, P.J.: CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 18, 288–296 (2016). https://doi.org/10.1039/c5gc01008j

    Article  Google Scholar 

  33. BIS: Specification for edible cottonseed flour (solvent extrcated) IS:4876.1986 Bureau of Indian Standards. BIS:1–16 (1986) https://ia800409.us.archive.org/8/items/gov.in.is.4876.1986/is.4876.1986.pdf. Accessed on 24 Jan 2020.

  34. Singh, S.; Sharma, S.K.; Kansal, S.K.: Batch extraction of gossypol from cottonseed meal using mixed solvent system and its kinetic modeling. Chem. Eng. Commun. 206(12), 1608–1617 (2019). https://doi.org/10.1080/00986445.2018.1558214

    Article  Google Scholar 

  35. Harouna-Oumarou, H.A.; Fauduet, H.; Porte, C.; Ho, Y.S.: Comparison of kinetic models for the aqueous solid-liquid extraction of Tilia sapwood a continuous stirred tank reactor. Chem. Eng. Commun. 194(4), 537–552 (2007). https://doi.org/10.1080/00986440600992511

    Article  Google Scholar 

  36. Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  37. Pohndorf, R.S.; Jr, T.R.S.C.; Pinto, L.A.A.: Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching. J. Food Eng. 185, 9–16 (2016). https://doi.org/10.1016/j.jfoodeng.2016.03.028

  38. Kumar, K.V.; Khaddour, I.A.; Gupta, V.K.: A pseudo second-order kinetic expression for dissolution kinetic profiles of solids in solutions. Ind. Eng. Chem. Res. 49, 7257–7262 (2010). https://doi.org/10.1021/ie1010228

    Article  Google Scholar 

  39. Sant, V.; Brandelli, A.; Damasceno, L.; Marczak, F.; Cristina, I.: Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts 100, 82–87 (2012). https://doi.org/10.1016/j.seppur.2012.09.004

    Article  Google Scholar 

  40. Dutta, R.; Sarkar, U.; Mukherjee, A.: Pseudo-kinetics of batch extraction of Crotalaria juncea (Sunn hemp) seed oil using 2-propanol. Ind. Crop. Prod. 87, 9–13 (2016). https://doi.org/10.1016/j.indcrop.2016.04.006

    Article  Google Scholar 

  41. Rashid, T.; Gnanasundaram, N.; Appusamy, A.; Fai, C.: Industrial crops & products enhanced lignin extraction from different species of oil palm biomass: kinetics and optimization of extraction conditions. Ind. Crop. Prod. 116, 122–136 (2018). https://doi.org/10.1016/j.indcrop.2018.02.056

    Article  Google Scholar 

  42. Sirry, S.M.; Aldakhil, F.; Alharbi, O.M.L.; Ali, I.: Chemically treated date stones for uranium (VI) uptake and extraction in aqueous solutions. J. Mol. Liq. 273, 192–202 (2019). https://doi.org/10.1016/j.molliq.2018.10.018

    Article  Google Scholar 

  43. Weber, W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Div. 89(2), 31–60 (1963)

    Google Scholar 

  44. Yoro, K.O.; Amosa, M.K.; Sekoai, P.T.; Mulopo, J.; Daramola, M.O.: Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit. Int. J. Sustain. Eng. (2019). https://doi.org/10.1080/19397038.2019.1592261

    Article  Google Scholar 

  45. Hron Sr., R.J.; Kuk, M.S.; Abraham, G.; Wan, P.J.: Ethanol extraction of oil, gossypol and aflatoxin from cottonseed. J. Am. Oil Chem. Soc. 71(4), 417–421 (1994). https://doi.org/10.1007/BF02540523

    Article  Google Scholar 

  46. Chi, R.; Tian, J.; Gao, H.; Zhou, F.; Liu, M.; Wang, C.; Wu, Y.: Kinetics of leaching flavonoids from pueraria lobata with ethanol. Chinese J. Chem. Eng. 14(3), 402–406 (2006). https://doi.org/10.1016/S1004-9541(06)60091-8

    Article  Google Scholar 

  47. Rakotondramasy-Rabesiaka, L.; Havet, J.L.; Porte, C.; Fauduet, H.: Solid-liquid extraction of protopine from Fumaria officinalis L-analysis determination, kinetic reaction and model building. Sep. Purif. Technol. 54(2), 253–261 (2007). https://doi.org/10.1016/j.seppur.2006.09.015

    Article  Google Scholar 

  48. Miyake, Y.; Ishida, H.; Tanaka, S.; Kolev, S.D.: Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag (I) to mesoporous silica microspheres functionalized with thiol groups. Chem. Eng. J. 218, 350–357 (2013). https://doi.org/10.1016/j.cej.2012.11.089

    Article  Google Scholar 

  49. Simeonov, E.; Tsibranska, I.; Minchev, A.: Solid-liquid extraction from plants-experimental kinetics and modelling. Chem. Eng. J. 73(3), 255–259 (1999). https://doi.org/10.1016/S1385-8947(99)00030-3

    Article  Google Scholar 

  50. Wongkittipong, R.; Prat, L.; Damronglerd, S.; Gourdon, C.: Solid-liquid extraction of andrographolide from plants-experimental study, kinetic reaction and model. Sep. Purif. Technol. 40(2), 147–154 (2004). https://doi.org/10.1016/j.seppur.2004.02.002

    Article  Google Scholar 

  51. Ho, Y.S.: Removal of copper ions from aqueous solution by tree fern. Water Res. 37, 2323–2330 (2003)

    Article  Google Scholar 

  52. Bispo, S.; Martins, M.A.; Caneschi, A.L.; Rafael, P.; Aguilar, M.; Selia, J.: Kinetics and thermodynamics of oil extraction from Jatropha curcas L using ethanol as a solvent. J. Chem. Eng. Int. (2015). https://doi.org/10.1155/2015/871236

    Article  Google Scholar 

  53. Meziane, S.; Kadi, H.: Kinetics and thermodynamics of oil extraction from olive cake. J. Am. Oil Chem. Soc. 85, 391–396 (2008)

    Article  Google Scholar 

  54. Kostic, M.D.; Jokovic, N.M.; Stamenkovic, O.S.; Rajkovic, K.M.; Milic, P.S.; Veljkovic, V.B.: The kinetics and thermodynamics of hempseed oil extraction by n-hexane. Ind. Crop. Prod. 52, 679–686 (2014)

    Article  Google Scholar 

  55. Johnson, L.A.; Lusas, E.W.: Comparison of alternative solvents for oils extraction. J. Am. Oil Chem. Soc. 60(2), 229–241 (1983)

    Article  Google Scholar 

  56. Stamenković, O.S.; Kostić, M.D.; Tasić, M.B.; Djalović, I.G.; Mitrović, P.M.; Biberdžić, M.O.; Veljković, V.B.: Kinetic, thermodynamic and optimization study of the corn germ oil extraction process. Food Bioprod. Process. 120, 91–103 (2020). https://doi.org/10.1016/j.fbp.2019.12.013

    Article  Google Scholar 

  57. Stamenković, O.S.; Djalović, I.G.; Kostić, M.D.; Mitrović, P.M.; Veljković, V.B.: Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds. Ind. Crops Prod. 121, 132–141 (2018). https://doi.org/10.1016/j.indcrop.2018.05.001

    Article  Google Scholar 

  58. Agu, C.M.; Kadurumba, C.H.; Agulanna, A.C.; Aneke, O.O.; Agu, I.E.; Eneh, J.N.: Nonlinear kinetics, thermodynamics, and parametric studies of colocynthis vulgaris shrad seeds oil extraction. Ind. Crops Prod. 123, 386–400 (2018). https://doi.org/10.1016/j.indcrop.2018.06.074

    Article  Google Scholar 

  59. Milić, P.S.; Rajković, K.M.; Bekrić, D.M.; Stamenković, O.S.; Veljković, V.B.: The kinetic and thermodynamic analysis of ultrasound-extraction of minerals from aerial parts of white lady’s bedstraw (Galium mollugo L). Chem. Eng. Res. Des. 92, 1399–1409 (2014). https://doi.org/10.1016/j.cherd.2013.10.024

    Article  Google Scholar 

  60. Dagostin, J.L.A.; Carpiné, D.; Corazza, M.L.: Extraction of soybean oil using ethanol and mixtures with alkyl esters (biodiesel) as co-solvent: kinetics and thermodynamics. Ind. Crops Prod. 74, 69–75 (2015). https://doi.org/10.1016/j.indcrop.2015.04.054

    Article  Google Scholar 

  61. Amarante, R.C.A.; Oliveira, P.M.; Schwantes, F.K.; Morón-Villarreyes, J.A.: Oil extraction from castor cake using ethanol: kinetics and thermodynamics. Ind. Eng. Chem. Res. 53, 6824–6829 (2014). https://doi.org/10.1021/ie500508n

    Article  Google Scholar 

  62. Liadakis, G.N.; Floridis, A.; Tzia, C.; Oreopoulou, V.: Protein isolates with reduced gossypol content from screw-pressed cottonseed meal. J. Agric. Food Chem. 41(6), 918–922 (1993). https://doi.org/10.1021/jf00030a016

    Article  Google Scholar 

  63. Kuk, M.S.; Hron Sr., R.J.: Cottonseed extraction with new solvent system: isohexane and alcohol. J. Am. Oil Chem. Soc. 75(8), 927–930 (1998). https://doi.org/10.1007/s11746-998-0268-4

    Article  Google Scholar 

  64. Kuk, M.S.; Tetlow, R.; Dowd, M.K.: Cotton seed extraction with mixture of acetone and hexane. J. Am. Oil Chem. Soc. 82(8), 609–612 (2005). https://doi.org/10.1007/s11746-005-1117-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Guru Gobind Singh Indraprastha University, Dwarka Sector-16, Delhi, and Panjab University, Chandigarh, for providing necessary facilities and technical support. This work was supported by TEQIP-III grant (MHRD, Govt. of India; 2017-2020) of Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Singh.

Ethics declarations

Conflict of interest

The authors hereby state that they have no conflicts of interest due to present report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, S.K. & Kansal, S.K. Extraction of Natural Pigment Gossypol from Defatted Cottonseed Using 2-Propanol-Water Green Solvent, Its Kinetics and Thermodynamic Study. Arab J Sci Eng 45, 7539–7550 (2020). https://doi.org/10.1007/s13369-020-04665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04665-6

Keywords

Navigation