Skip to main content
Log in

Multigrid preconditioners for anisotropic space-fractional diffusion equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We focus on a two-dimensional time-space diffusion equation with fractional derivatives in space. The use of Crank-Nicolson in time and finite differences in space leads to dense Toeplitz-like linear systems. Multigrid strategies that exploit such structure are particularly effective when the fractional orders are both close to 2. We seek to investigate how structure-based multigrid approaches can be efficiently extended to the case where only one of the two fractional orders is close to 2, i.e., when the fractional equation shows an intrinsic anisotropy. Precisely, we design a multigrid (block-banded–banded-block) preconditioner whose grid transfer operator is obtained with a semi-coarsening technique and that has relaxed Jacobi as smoother. The Jacobi relaxation parameter is estimated by using an automatic symbol-based procedure. A further improvement in the robustness of the proposed multigrid method is attained using the V-cycle with semi-coarsening as smoother inside an outer full-coarsening. Several numerical results confirm that the resulting multigrid preconditioner is computationally effective and outperforms current state of the art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aricò, A., Donatelli, M., Serra-capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26, 186–214 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bai, J., Feng, X.: Fractional-order anisotropic diffusion for image denoising. IEEE Tran. on Image Process. 16, 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bini, D., Capovani, M., Menchi, O.: Metodi Numerici per l’Algebra Lineare. Zanichelli, Bologna (1988)

    MATH  Google Scholar 

  4. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains,. Fract. Calc. Appl. Anal. 18(2), 342–360 (2015)

    Article  MathSciNet  Google Scholar 

  5. Donatelli, M.: An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Two-grid optimality for Galerkin linear systems based on B-splines. Comput. Vis. Sci. 17, 119–133 (2015)

    Article  MathSciNet  Google Scholar 

  7. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  8. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci Comput. 40, A4007–A4039 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fischer, R., Huckle, T.: Multigrid methods for anisotropic BTTB systems. Linear Algebra Appl. 417, 314–334 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fischer, R., Huckle, T.: Multigrid solution techniques for anisotropic structured linear systems. Appl. Numer. Math. 58, 407–421 (2008)

    Article  MathSciNet  Google Scholar 

  11. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, Vol. I. Springer, Cham (2017)

    Book  Google Scholar 

  12. Hemker, P.W.: On the order of prolongations and restrictions in multigrid procedures. J. Comput. Appl. Math. 32(3), 423–429 (1990)

    Article  MathSciNet  Google Scholar 

  13. Jiang, Y., Xu, X.: Multigrid methods for space fractional partial differential equations. J. Comput. Phys. 302, 374–392 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  15. Lin, X., Ng, M. K., Sun, H.: A splitting preconditioner for Toeplitz-Like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lin, X., Ng, M.K., Sun, H.: A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)

    Article  MathSciNet  Google Scholar 

  17. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)

    Article  MathSciNet  Google Scholar 

  18. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J Comput. Phys. 350, 992–1011 (2017)

    Article  MathSciNet  Google Scholar 

  19. Oldham, K.B., Spanier, J.: Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  20. Oosterlee, C.W.: The convergence of parallel multiblock multigrid methods. Appl. Numer. Math. 19, 115–128 (1995)

    Article  MathSciNet  Google Scholar 

  21. Pang, H., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  Google Scholar 

  22. Ruge, J W., Stüben, K.: Algebraic multigrid Mccormick, S.F. (ed.), Multigrid Methods, Front. Math. Appl. SIAM, 3, 73-130 (1987)

  23. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space-fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  24. Serra-Capizzano, S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences. Numer. Math. 92, 433–465 (2002)

    Article  MathSciNet  Google Scholar 

  25. van Lent, J., Vandewalle, S.: Multigrid waveform relaxation for anisotropic partial differential equations. Numer. Algor. 31, 361–380 (2002)

    Article  MathSciNet  Google Scholar 

  26. Washio, T., Oosterlee, C.W.: Flexible multiple semi-coarsening for three-dimensional singularly perturbed problems. SIAM J. Sci. Comput. 19, 1646–1666 (1998)

    Article  MathSciNet  Google Scholar 

  27. Wang, H., Wang, K., Sircar, T.: A direct \(\mathcal {O}(n\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariarosa Mazza.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partly supported by GNCS-INDAM (Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donatelli, M., Krause, R., Mazza, M. et al. Multigrid preconditioners for anisotropic space-fractional diffusion equations. Adv Comput Math 46, 49 (2020). https://doi.org/10.1007/s10444-020-09790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09790-2

Keywords

Mathematics Subject Classification (2010)

Navigation