Skip to main content

Advertisement

Log in

Effects of Silicon on the Microstructure and Mechanical Properties of 15–15Ti Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Effects of silicon on the microstructure and mechanical properties of 20% cold-worked 15–15Ti austenitic stainless steels are systemically investigated by uniaxial tensile tests, scanning and transmission electron microscope observations, and strength calculations. The results reveal that a large number of deformation twins are formed in the 20% cold-worked steels with various silicon additions. The volume fraction of deformation twins and the density of dislocations increase with silicon content, while the twin thickness slightly decreases. A better strength–ductility combination is achieved by silicon addition, since the yield strength of the steel with 2% silicon is 61 MPa higher than that of the steel with 1% silicon, while their uniform elongations are almost both equal to 16%. The yield strength of the 15–15Ti stainless steels is predominantly contributed by the solid solution, dislocation and deformation twin strengthening effects, which can be enhanced by silicon addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.L. Séran, V. Levy, P. Dubuisson, D. Gilbon, A. Maillard, A. Fissolo, H. Touron, R. Cauvin, A. Chalony, E. Le Boulbin, 15th Int. Symp. ASTM STP. 1125, 1209 (1992)

    Google Scholar 

  2. S. Xu, X.Q. Wu, E.H. Han, W. Ke, Y. Katada, Mater. Sci. Eng. A 490, 16 (2008)

    Article  Google Scholar 

  3. K. RamReddy, E.N. Kumar, R. Jeyaraam, G.D. Janaki Ram, V. Subramanya Sarma, Mater. Charact. 142, 115 (2018)

    Article  CAS  Google Scholar 

  4. C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, Corros. Sci. 84, 113 (2014)

    Article  CAS  Google Scholar 

  5. S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009)

    Article  CAS  Google Scholar 

  6. Y. Kurata, M. Futakawa, J. Nucl. Mater. 325, 217 (2004)

    Article  CAS  Google Scholar 

  7. F.A. Garner, T. Lauritzen, M.A. Mitchell, 16th Int. Symp. ASTM STP. 1175, 803 (1993)

    Google Scholar 

  8. P. Sahu, M. De, S. Kajiwara, Mater. Sci. Eng. A 333, 10 (2002)

    Article  Google Scholar 

  9. R.E. Smallman, K.H. Westmacott, Philos. Mag. 2, 669 (1957)

    Article  CAS  Google Scholar 

  10. H.Y. Yi, S.H. Chen, M. Wang, T. Liang, Y.C. Ma, Chin. J. Eng. (2019). https://doi.org/10.13374/j.issn2095-9389.2019.02.24.003

    Article  Google Scholar 

  11. A.S. Hamada, L.P. Karjalainen, M.C. Somani, Mater. Sci. Eng. A 467, 114 (2007)

    Article  Google Scholar 

  12. R.E. Schramm, R.P. Reed, Metal. Trans. A 6, 1345 (1975)

    Article  Google Scholar 

  13. K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, Y.K. Lee, Acta Mater. 61, 3399 (2013)

    Article  CAS  Google Scholar 

  14. G.R. Lehnhoff, K.O. Findley, B.C. Cooman, Scr. Mater. 92, 19 (2004)

    Article  Google Scholar 

  15. Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60, 211 (2009)

    Article  CAS  Google Scholar 

  16. L.N. Bartlett, D.C.V. Aken, J. Medvedeva, D. Isheim, N.I. Medvedeva, K. Song, Metal. Mater. Trans. A 2421, 45 (2014)

    Google Scholar 

  17. F.S. Pan, M. Hirohashi, Y. Lu, P.D. Ding, A.T. Tang, D.V. Edmonds, Metal. Mater. Trans. A 2757, 35 (2004)

    Google Scholar 

  18. H.S. Ubhi, T.N. Baker, Mater. Sci. Eng. A 189, 111 (1989)

    Google Scholar 

  19. K.J. Irvine, T. Gladman, F.B. Pickering, J. Iron, Steel Inst. 207, 1017 (1969)

    CAS  Google Scholar 

  20. A. Schino, I. Salvatori, J.M. Kenny, J. Mater. Sci. 37, 4561 (2002)

    Article  Google Scholar 

  21. B. Hutchinson, N. Ridley, Scr. Mater. 55, 299 (2006)

    Article  CAS  Google Scholar 

  22. S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng. A 387, 143 (2004)

    Article  Google Scholar 

  23. O. Bouaziz, N. Guelton, Mater. Sci. Eng. A 319, 246 (2001)

    Article  Google Scholar 

  24. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59, 6449 (2011)

    Article  CAS  Google Scholar 

  25. E. Nes, Prog. Mater. Sci. 41, 129 (1998)

    Article  Google Scholar 

  26. G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527, 2759 (2010)

    Article  Google Scholar 

  27. T. Gladman, D. Dulieu, I.D. Mcivor, in Proceedings of Symposium on Microalloy 75, Union Carbide Corp, New York, vol. 32 (1976)

  28. O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 319–321, 246 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-248).

Author information

Authors and Affiliations

Authors

Contributions

H-YY was involved in writing—original draft preparation; MW was involved in writing—review and editing; TL contributed to methodology; X-DZ contributed to investigation; Y-CM was involved in validation; and KL was involved in supervision.

Corresponding authors

Correspondence to Min Wang or Ying-Che Ma.

Additional information

Available online at https://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, HY., Liang, T., Wang, M. et al. Effects of Silicon on the Microstructure and Mechanical Properties of 15–15Ti Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 33, 1583–1590 (2020). https://doi.org/10.1007/s40195-020-01068-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01068-2

Keywords

Navigation