Skip to main content
Log in

Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The state-space approach is developed to analyze the dynamic behaviors of a multilayered two-dimensional piezoelectric quasicrystal circular cylinder filled with the compressible fluid. With simple support at both ends, the hollow cylindrical shell has imperfect bonding between the layers. The analytical solution of a homogeneous cylindrical shell has been derived based on the state equations. The general solution for the corresponding multilayered case is also obtained by utilizing the propagator matrix method. The numerical results present the natural frequencies in free vibration with different length-to-radius and radius-to-thickness ratios. The critical load and dynamic behaviors of the model are exactly predicted in the axial buckling problem. For the impulse case, the influences of the density of the filled fluid and coefficients of interfacial imperfections on the dynamic responses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shechtman, D.G., Blech, I.A., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Google Scholar 

  2. Dubois, J.M.: Useful Quasicrystals. World Scientific, Singapore (2006)

    Google Scholar 

  3. Wang, R.H., Hu, B.Z., Gui, J.N.: Quasicrystal Physics. Science Press, Beijing (2004) (in Chinese)

  4. Jaric, M.V., Nelson, D.R.: Introduction to quasicrystals. Phys. Today 43, 77–79 (1990)

    Google Scholar 

  5. Zhou, Y.B., Li, X.F.: Elasto-hydrodynamics of quasicrystals with a crack under sudden impacts. Philos. Mag. Lett. 76, 419–436 (2018)

    Google Scholar 

  6. Zhou, Y.B., Li, X.F.: Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack. Eur. J. Mech. A-Solids 76, 224–234 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals: a group-theoretical study. Pramana J. Phys. 68, 481–487 (2007)

    Google Scholar 

  8. Yang, L.Z., Gao, Y., Pan, E.: Electric-elastic field induced by a straight dislocation in one-dimensional quasicrystals. Acta Phys. Pol. A 126, 467–470 (2014)

    Google Scholar 

  9. Li, X.Y., Li, P.D., Wu, T.H., Shi, M., Zhu, Z.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Guo, J.H., Pan, E.: Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasicrystal composites. ASME J. Appl. Mech. 83, 08100701 (2016)

    Google Scholar 

  11. Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018)

    Google Scholar 

  12. Mukhopadhyay, S.: Mixed convection boundary layer flow along a stretching cylinder in porous medium. J. Pet. Sci. Eng. 96–97, 73–78 (2012)

    Google Scholar 

  13. Mahdi, D.D., Mahmood, F.G., Navid, N.: The full simulation of rapid refueling of a natural gas vehicle on-board cylinder. J. Nat. Gas Sci. Eng. 21, 1099–1106 (2014)

    Google Scholar 

  14. Fan, T.Y., Mai, Y.M.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)

    Google Scholar 

  15. Shi, W.: Conservation laws of a decagonal quasicrystal in elastodynamics. Eur. J. Mech. A-Solids 24, 217–226 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Science Press, Beijing (2010)

    MATH  Google Scholar 

  17. Agiasofitou, E., Lazar, M.: The elastodynamic model of wave-telegraph type for quasicrystals. Int. J. Solids Struct. 51, 923–929 (2014)

    Google Scholar 

  18. Rochal, S., Lorman, V.: Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy. Phys. Rev. B 66, 1442040 (2002)

    Google Scholar 

  19. Fan, T.Y., Wang, X.F., Li, W., Zhu, A.Y.: Elasto-hydrodynamics of quasicrystals. Philos. Mag. 89, 501–512 (2009)

    Google Scholar 

  20. Sladek, J., Sladek, V., Pan, E.: Bending analyses of 1D orthorhombic quasicrystal plates. Int. J. Solids Struct. 50, 3975–3983 (2013)

    Google Scholar 

  21. Sladek, J., Sladek, V., Zhang, C., Wünsche, M.: Modelling of orthorhombic quasicrystal shallow shells. Eur. J. Mech. A-Solids 49, 518–530 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Li, Y.S., Feng, W.J., Zhang, C.: Buckling and vibration of the two-dimensional quasicrystal cylindrical shells under axial compression. Appl. Math. Model. 50, 68–91 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Hosseini, S.M., Sladek, J., Sladek, V.: Elastodynamic analysis of a hollow cylinder with decagonal quasicrystal properties: meshless implementation of local integral equations. Crystals 6, 1–16 (2016)

    Google Scholar 

  24. Louzguine-Luzgin, D.V., Inoue, A.: Formation and properties of quasicrystals. Annu. Rev. Mater. Res. 38, 403–423 (2008)

    Google Scholar 

  25. Yang, L.Z., Gao, Y., Pan, E., Waksmanski, N.: An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mech. 226, 3611–3621 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Waksmanski, N., Pan, E., Yang, L.Z., Gao, Y.: Free vibration of a multilayered one-dimensional quasi-crystal plate. J. Vib. Acoust. 136, 1–8 (2014)

    Google Scholar 

  27. Waksmanski, N., Pan, E., Yang, L.Z., Gao, Y.: Harmonic response of multilayered one-dimensional quasicrystal plates subjected to patch loading. J. Sound Vib. 375, 237–253 (2016)

    Google Scholar 

  28. Yang, L.Z., Li, Y., Gao, Y., Pan, E., Waksmanski, N.: Three-dimensional exact electric-elastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Compos. Struct. 171, 198–216 (2017)

    Google Scholar 

  29. Li, Y., Yang, L., Gao, Y., Pan, E.: Cylindrical bending analysis of a layered two-dimensional piezoelectric quasicrystal nanoplate. J. Intell. Mater. Syst. Struct. 29, 2660–2676 (2018)

    Google Scholar 

  30. Yang, L.Z., Li, Y., Gao, Y., Pan, E.: Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates. Appl. Math. Model. 63, 203–218 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Aboudi, J.: Damage in composites-modeling of imperfect bonding. Compos. Sci. Technol. 28, 103–128 (1987)

    Google Scholar 

  32. Benveniste, Y.: The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 4, 197–208 (1985)

    Google Scholar 

  33. Ray, M.C., Reddy, J.N.: Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites. Compos. Sci. Tech. 65, 1226–1236 (2005)

    Google Scholar 

  34. Shakeri, M., Akhlaghi, M., Hoseini, S.M.: Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos. Struct. 76, 174–181 (2006)

    Google Scholar 

  35. Soldatos, K.P., Timarci, T.: A unified formulation of laminated composites, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos. Struct. 25, 165–171 (1993)

    Google Scholar 

  36. Nath, J.K., Kapuria, S.: Improved smeared and zigzag third-order theories for piezoelectric angle-ply laminated cylindrical shells under electrothermomechanical loads. J. Mech. Mater. Struct. 4, 1157–1184 (2009)

    Google Scholar 

  37. Zhu, J.Q., Chen, C.Q., Shen, Y.P., Wang, S.L.: Dynamic stability of functionally graded piezoelectric circular cylindrical shells. Mater. Lett. 59, 477–485 (2005)

    Google Scholar 

  38. Zhu, J.Q., Chen, C.Q., Shen, Y.P.: Three dimensional analysis of the dynamic stability of piezoelectric circular cylindrical shells. Eur. J. Mech. A-Solids 22, 401–411 (2003)

    MATH  Google Scholar 

  39. Botta, F., Cerri, G.: Wave propagation in Reissner–Mindlin piezoelectric coupled cylinder with nonconstant electric field through the thickness. Int. J. Solid. Struct. 44, 6201–6219 (2007)

    MATH  Google Scholar 

  40. Haddadpour, H., Mahmoudkhani, S., Navazi, H.M.: Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin Wall. Struct. 45, 591–599 (2007)

    Google Scholar 

  41. Chen, W.Q., Ding, H.J.: Natural frequencies of fluid-filled transversely isotropic cylindrical shells. Int. J. Mech. Sci. 41, 677–684 (1999)

    MATH  Google Scholar 

  42. Junger, M.C., Feit, D.: Sound Structures, and Their Interaction. Acoustical Society of America, Woodbury (1993)

    MATH  Google Scholar 

  43. Moore, I.D.: Buried pipes and culverts. Geotech. Geoenviron. Eng. Handb. 18, 541–567 (2001)

    Google Scholar 

  44. Luo, P.L.: Combined Theory of Strength and Stability. Science Press, Beijing (2014). (in Chinese)

    Google Scholar 

  45. Chen, W.Q., Bian, Z.G., Lv, C.F., Ding, H.J.: 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Int. J. Solids Struct. 41, 947–964 (2004)

    MATH  Google Scholar 

  46. Chen, W.Q., Bian, Z.G., Ding, H.J.: Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. Int. J. Mech. Sci. 46, 159–171 (2004)

    MATH  Google Scholar 

  47. Zhao, J., Bian, Z.G., Chen, W.Q.: Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid. Struct. Eng. Mech. 34, 449–474 (2010)

    Google Scholar 

  48. Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92, 4334–4353 (2012)

    Google Scholar 

  49. Li, Y., Yang, L.Z., Zhang, L.L., Gao, Y.: Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mech. Adv. Mater. Struct. (online) (2019). https://doi.org/10.1080/15376494.2019.1655687

    Article  Google Scholar 

  50. Ding, H.J., Chen, W.Q.: Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York (2001)

    Google Scholar 

  51. Chen, W.Q., Cai, J.B., Ye, G.R.: Exact solutions of cross-ply laminates with bonding imperfections. AIAA J. 41, 2244–2250 (2003)

    Google Scholar 

  52. Bian, Z.G., Chen, W.Q., Lim, C.W., Zhang, N.: Analytical solutions for single- and multi-span functionally graded plates in cylindrical bending. Int. J. Solids Struct. 42, 6433–6456 (2005)

    MATH  Google Scholar 

  53. Bian, Z.G., Lim, C.W., Chen, W.Q.: On functionally graded beams with integrated surface piezoelectric layers. Compos. Struct. 72, 339–351 (2006)

    Google Scholar 

  54. Luo, P.L., Luo, H., Tong, F.: The influence of prebuckling deformations and stresses on the buckling of the spherical shell. Int. J. Offshore Polar 1, 284–292 (2013)

    Google Scholar 

  55. Jafari, A.A., Khalili, S.M.R., Azarafza, R.: Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads. Thin Wall. Struct. 43, 1763–1786 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972354, 11972365, 51704015 and 11772349) and China Agricultural University Education Foundation (No. 1101-2412001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The operational matrixes A \((13 \times 13)\) and B\((13 \times 8)\) in Eqs. (4) and (5) are presented as follows:

$$\begin{aligned} {\mathbf{A}}= & {} \left[ {{\begin{array}{ll} {{\mathbf{A}}_{11} } &{}\quad {{\mathbf{A}}_{12} } \\ {{\mathbf{A}}_{21} } &{}\quad {{\mathbf{A}}_{22} } \\ \end{array} }} \right] ,\\ {\mathbf{A}}_{11}= & {} \left[ {{\begin{array}{llllll} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{e_{15} }{\alpha }} \\ 0 &{} {\frac{1}{r}} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ {\frac{\vartheta _{1} }{r}\frac{\partial }{\partial z}} &{} {\frac{\vartheta _{3} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{2} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{4} }{r}} &{} {\frac{\beta _{5} }{r\beta _{2} }} &{} 0 \\ {\frac{C_{13} \beta _{4} }{r\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{\vartheta _{2} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{5} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{4} }{r\beta _{2} }} &{} {-\frac{C_{11} \beta _{4} }{rR_{1} \beta _{2} }} &{} 0 \\ {-\left( \frac{e_{24} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}+\frac{\kappa _{2} }{\beta _{2} }\frac{\partial ^{2}}{\partial z^{2}}\right) } &{} {-\frac{(e_{24} \beta _{2} +\kappa _{1} )}{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {-\frac{e_{31} \beta _{4} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {\frac{e_{31} K_{1} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{e_{31} R_{1} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{e_{15}^{2} }{r\alpha }} \\ \end{array} }} \right] ,\\ {\mathbf{A}}_{12}= & {} \left[ {{\begin{array}{lllllll} {\frac{\chi _{11} }{\alpha }} &{} 0 &{} 0 &{} 0 &{} {-\frac{\partial }{\partial z}} &{} 0 &{} 0 \\ 0 &{} {\frac{1}{C_{66} }} &{} {-\beta _{10} } &{} {-\beta _{10} } &{} {-\frac{\partial }{r\partial \theta }} &{} {\frac{2R_{1} }{C_{66} }\frac{\partial }{r\partial \theta }} &{} 0 \\ 0 &{} 0 &{} {\frac{1}{(K_{1} -K_{2} )}} &{} {\frac{1}{(K_{1} -K_{2} )}} &{} 0 &{} {\frac{\partial }{r\partial \theta }} &{} 0 \\ {-\frac{\partial }{\partial z}} &{} {-\frac{\partial }{r\partial \theta }} &{} 0 &{} 0 &{} {(\rho \frac{\partial ^{2}}{\partial t^{2}}+\vartheta _{3} )} &{} {\frac{\vartheta _{2} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {\frac{\kappa _{1} }{r\beta _{2} }\frac{\partial }{\partial z}} \\ 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\vartheta _{2} }{r^{2}}} &{} {\left( \rho \frac{\partial ^{2}}{\partial t^{2}}-K_{4} \frac{\partial ^{2}}{\partial z^{2}}+\frac{\vartheta _{5} }{r^{2}}\frac{\partial }{\partial \theta }\right) } &{} {\frac{e_{31} \beta _{4} }{r\beta _{2} }\frac{\partial }{\partial z}} \\ {-\frac{\chi _{11} e_{15} }{r\alpha }} &{} 0 &{} 0 &{} 0 &{} {-\frac{\kappa _{1} }{r\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{e_{31} \beta _{4} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {(\frac{\chi _{22} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}+\frac{\kappa _{3} }{\beta _{2} }\frac{\partial ^{2}}{\partial z^{2}})} \\ \end{array} }} \right] , \end{aligned}$$
$$\begin{aligned} {\mathbf{A}}_{21}= & {} \left[ {{\begin{array}{ccccccc} {\left( \rho \frac{\partial ^{2}}{\partial t^{2}}-\frac{C_{44} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-\frac{\kappa _{4} }{\beta _{2} }\frac{\partial ^{2}}{\partial z^{2}}\right) } &{} {-\frac{(C_{44} \beta _{2} +\kappa _{5} )}{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {-\frac{\beta _{4} C_{13} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {\frac{K_{1} C_{13} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{R_{1} C_{13} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{e_{24} C_{44} }{r^{2}\alpha }\frac{\partial }{\partial \theta }} \\ {-\frac{(\beta _{2} \kappa _{6} +C_{13} \beta _{3} )}{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {\left( \rho \frac{\partial ^{2}}{\partial t^{2}}-\frac{\vartheta _{3} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-C_{44} \frac{\partial ^{2}}{\partial z^{2}}\right) } &{} {-\frac{\vartheta _{2} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}} &{} {-\frac{\beta _{3} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{5} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {\frac{e_{24} C_{44} }{r\alpha }\frac{\partial }{\partial z}} \\ {-\frac{C_{13} \beta _{4} }{r\beta _{1} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {-\frac{\vartheta _{2} \beta _{2} }{r^{2}\beta _{1} }\frac{\partial ^{2}}{\partial \theta ^{2}}} &{} {\left( \rho \frac{\partial ^{2}}{\partial t^{2}}+\frac{\vartheta _{5} \beta _{2} }{r^{2}\beta _{1} }\frac{\partial ^{2}}{\partial \theta ^{2}}-K_{4} \frac{\partial ^{2}}{\partial z^{2}}\right) } &{} {\frac{\beta _{4} }{r\beta _{1} }\frac{\partial }{\partial \theta }} &{} {\frac{(2R^{2}-\beta _{2} )}{r\beta _{1} }\frac{\partial }{\partial \theta }} &{} 0 \\ {-\frac{C_{13} \beta _{4} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {-\frac{\vartheta _{2} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}} &{} {\left( \rho \frac{\partial ^{2}}{\partial t^{2}}-\frac{\vartheta _{5} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-K_{4} \frac{\partial ^{2}}{\partial z^{2}}\right) } &{} {\frac{\beta _{4} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{6} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} 0 \\ {-\frac{K_{1} C_{13} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{\beta _{3} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {\frac{\beta _{4} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{K_{1} }{\beta _{2} }} &{} {\frac{R_{1} }{\beta _{2} }} &{} 0 \\ {-\frac{R_{1} C_{13} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{\beta _{5} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{6} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {\frac{R_{1} }{\beta _{2} }} &{} {\frac{C_{11} }{\beta _{2} }} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {-\frac{C_{44} }{\alpha }} \\ \end{array} }} \right] , \end{aligned}$$
$$\begin{aligned} {\mathbf{A}}_{22}= & {} \left[ {{\begin{array}{ccccccc} {-\left( \frac{1}{r}+\frac{e_{15} e_{24} }{r^{2}\alpha }\frac{\partial }{\partial \theta }\right) } &{} 0 &{} 0 &{} 0 &{} {-\frac{\kappa _{5} }{r\beta _{2} }\frac{\partial }{\partial z}} &{} {-\frac{\beta _{4} C_{13} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} &{} {\frac{\kappa _{2} }{\beta _{2} }\frac{\partial ^{2}}{\partial z^{2}}} \\ {-\frac{e_{15} e_{24} }{r\alpha }\frac{\partial }{\partial z}} &{} {-\frac{2}{r}} &{} 0 &{} 0 &{} {-\frac{\vartheta _{3} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {-\frac{\vartheta _{2} }{r^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}} &{} {-\frac{\kappa _{1} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} \\ 0 &{} 0 &{} {-\frac{1}{r}} &{} {-\frac{1}{r}} &{} {-\frac{\vartheta _{2} \beta _{2} }{r^{2}\beta _{1} }\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{5} \beta _{2} }{r^{2}\beta _{1} }\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{4} e_{31} }{r\beta _{1} }\frac{\partial ^{2}}{\partial \theta \partial z}} \\ 0 &{} 0 &{} {-\frac{1}{r}} &{} {-\frac{1}{r}} &{} {-\frac{\vartheta _{2} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {-\frac{\vartheta _{5} }{r^{2}}\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{4} e_{31} }{r\beta _{2} }\frac{\partial ^{2}}{\partial \theta \partial z}} \\ 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\beta _{3} }{r\beta _{2} }} &{} {\frac{\beta _{4} }{r\beta _{2} }} &{} {\frac{e_{31} K_{1} }{\beta _{2} }\frac{\partial }{\partial z}} \\ 0 &{} 0 &{} 0 &{} 0 &{} {-\frac{\beta _{5} }{r\beta _{2} }} &{} {-\frac{\beta _{6} }{r\beta _{2} }} &{} {-\frac{e_{31} R_{1} }{\beta _{2} }\frac{\partial }{\partial z}} \\ {\frac{e_{15} }{\alpha }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] .\\ {\mathbf{B}}= & {} \left[ {{\begin{array}{ccccccccccccc} {\frac{\kappa _{4} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{\vartheta _{1} }{r}\frac{\partial }{\partial \theta }} &{} {\frac{\beta _{4} C_{13} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{K_{1} C_{13} }{\beta _{2} }} &{} {\frac{R_{1} C_{13} }{\beta _{2} }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\vartheta _{1} }{r}} &{} {\frac{\beta _{4} C_{13} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {\frac{\kappa _{2} }{\beta _{2} }\frac{\partial }{\partial z}} \\ {\vartheta _{1} \frac{\partial }{\partial z}} &{} {\frac{\vartheta _{3} }{r}\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{2} }{r}\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{3} }{\beta _{2} }} &{} {\frac{\beta _{5} }{\beta _{2} }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\vartheta _{3} }{r}} &{} {\frac{\vartheta _{2} }{r}\frac{\partial }{\partial \theta }} &{} {\frac{\kappa _{1} }{\beta _{2} }\frac{\partial }{\partial z}} \\ {\frac{C_{44} }{r}\frac{\partial }{\partial \theta }} &{} {C_{44} \frac{\partial }{\partial z}} &{} 0 &{} 0 &{} 0 &{} {\frac{e_{24} C_{44} }{r\alpha }} &{} {\frac{e_{15} e_{24} }{r\alpha }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {K_{4} \frac{\partial }{\partial z}} &{} 0 \\ {\frac{\beta _{4} C_{13} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{\vartheta _{2} }{r}\frac{\partial }{\partial \theta }} &{} {\frac{\vartheta _{5} }{r}\frac{\partial }{\partial \theta }} &{} {-\frac{\beta _{4} }{\beta _{2} }} &{} {\frac{\beta _{6} }{\beta _{2} }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\vartheta _{2} }{r}} &{} {\frac{\vartheta _{5} }{r}\frac{\partial }{\partial \theta }} &{} {\frac{\beta _{4} e_{13} }{\beta _{2} }\frac{\partial }{\partial z}} \\ 0 &{} 0 &{} {K_{4} \frac{\partial }{\partial z}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ {\frac{\kappa _{2} }{\beta _{2} }\frac{\partial }{\partial z}} &{} {\frac{\kappa _{1} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {\frac{\beta _{4} e_{13} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{K_{1} e_{13} }{\beta _{2} }} &{} {\frac{R_{1} e_{13} }{\beta _{2} }} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\kappa _{1} }{r\beta _{2} }} &{} {\frac{\beta _{4} e_{13} }{r\beta _{2} }\frac{\partial }{\partial \theta }} &{} {-\frac{\kappa _{3} }{\beta _{2} }\frac{\partial }{\partial z}} \\ {\frac{e_{24} }{r}\frac{\partial }{\partial \theta }} &{} {e_{24} \frac{\partial }{\partial z}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{\chi _{22} }{r}\frac{\partial }{\partial \theta }} \\ \end{array} }} \right] , \end{aligned}$$

where

$$\begin{aligned} \alpha= & {} C_{55} \chi _{11} +e_{15}^{2} , \beta _{1} =R_{1}^{2} +C_{11} K_{2} , \beta _{2} =R_{1}^{2} -C_{11} K_{1} , \beta _{3} =C_{12} K_{1} +R_{1}^{2} , \beta _{4} =R_{1} (K_{1} -K_{2} ),\\ \beta _{5}= & {} R_{1} (C_{11} +C_{12} ), \beta _{6} =R_{1}^{2} -C_{11} K_{2} , \beta _{7} =C_{12}^{2} -C_{11}^{2} , \beta _{8} =K_{1} (C_{12} -C_{11} ), \beta _{9} =K_{2}^{2} -K_{1}^{2} , \\ \beta _{10}= & {} R_{1} /[C_{66} (K_{1} -K_{2} )],\kappa _{1} =e_{32} \beta _{2} +e_{31} \beta _{3} , \kappa _{2} =e_{33} \beta _{2} +e_{31} C_{13} K_{1} , \kappa _{3} =\chi _{33} \beta _{2} -e_{31}^{2} K_{1} ,\\ \kappa _{4}= & {} C_{33} \beta _{2} +C_{13}^{2} K_{1} , \kappa _{5} =C_{13} (\beta _{2} +\beta _{3} ), \kappa _{6} =C_{23} +C_{44} ,\vartheta _{1} =\kappa _{5} /\beta _{2} ,\vartheta _{2} =\beta _{4} \beta _{5} /(R_{1} \beta _{2} ),\\ \vartheta _{3}= & {} (2R_{1} \beta _{5} +K_{1} \beta _{7} )/\beta _{2} , \vartheta _{4} =-(2R_{1}^{2} +\beta _{8} )/\beta _{2} , \vartheta _{5} =(2R_{1} \beta _{4} +C_{11} \beta _{9} )/\beta _{2} , \lambda \text{= }m\pi R/L. \end{aligned}$$

The operational matrixes C\(^{i}\), C\(^{c}\), and D\(^{i}\) in Eqs. (7)–(9) can also be presented in similar form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, Y., Zhang, L. et al. Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mech 231, 2351–2368 (2020). https://doi.org/10.1007/s00707-020-02641-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02641-7

Navigation