Skip to main content
Log in

A molecular dynamics study of effects of crystal orientation, size scale, and strain rate on penetration mechanisms of monocrystalline copper subjected to impact from a nickel penetrator at very high strain rates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a systematic computational study to investigate the effects of crystal orientation, strain rate (impact velocity), and size (thickness) on plasticity and damage behavior of copper single crystals during the penetration process at the atomistic scale. For the penetration analysis, copper single crystals with different crystal orientations and thicknesses were impacted and penetrated by a cylindrical nickel penetrator at different initial velocities. Modified embedded atom method potentials were used to develop atomistic models, and over 250 molecular dynamics simulations were performed to fully reveal the effects of influence parameters on plasticity and damage behavior of the copper single crystals. The results show that the copper single crystal with an octal slip orientation exhibits the greatest strength and penetration resistance, while the copper crystal with the single slip orientation exhibits the lowest strength and resistance. The results further show that the strength and penetration resistance of the target increase as the thickness of the copper single crystals increases. Furthermore, as the impact velocity increases, damage and fragmentation increase. Conclusions drawn from this computational study are consistent with macroscale plasticity theories of metals and reaffirm the conclusions drawn by other researchers in previous experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Meyers, M.A., Andrade, U.R., Chokshi, A.H.: The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall. Mater. Trans. A 26(10), 2881–2893 (1995)

    Google Scholar 

  2. Escobedo, J.P., Dennis-Koller, D., Cerreta, E.K., Patterson, B.M., Bronkhorst, C.A., Hansen, B.L., Tonks, D., Lebensohn, R.A.: Effects of grain size and boundary structure on the dynamic tensile response of copper. J. Appl. Phys. 110(3), 033513.3 (2011)

    Google Scholar 

  3. Guo, X., Yang, G., Weng, G.J., Zhu, L.L.: Numerical simulation of ballistic performance of bimodal nanostructured metals. Mater. Sci. Eng. A 630, 13–26 (2015)

    Google Scholar 

  4. Yang, G., Guo, X., Weng, G.J., Zhu, L.L., Ji, R.: Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Model. Simul. Mater. Sci. Eng. 23, 085009 (2015)

    Google Scholar 

  5. Guo, X., Ji, R., Weng, G.J., Zhu, L.L., Lu, J.: Micromechanical simulation of fracture behavior of bimodal nanostructured metals. Mater. Sci. Eng. A 618, 479–489 (2014)

    Google Scholar 

  6. Guo, X., Ouyang, Q.D., Weng, G.J., Zhu, L.L.: The direct and indirect effects of nanotwin volume fraction on the strength and ductility of coarse-grained metals. Mater. Sci. Eng. A 657, 234–243 (2016)

    Google Scholar 

  7. He, G., Dou, Y.-Q., Guo, X., Liu, Y.-C.: Computational investigation of effects of grain size on ballistic performance of copper. Int. J. Comput. Methods Eng. Sci. Mech. 19(1), 1–10 (2018)

    Google Scholar 

  8. He, G., Dou, Y.-Q., Guo, X., Liu, Y.-C.: Effects of grain size on ballistic response of copper materials. In: IMECE 2017-70585, Proceedings of ASME 2017 International Mechanical Engineering Congress & Exposition, Tampa, FL, USA, November 3–9 (2017)

  9. Christiansen, E.L., Kerr, J.H.: Ballistic limit equations for spacecraft shielding. Int. J. Impact Eng. 26, 93–104 (2001)

    Google Scholar 

  10. Shuo, Y., et al.: Examination on the calculation method for modeling the multi-particle impact process in cold spraying. J. Therm. Spray Technol. 19(5), 1032–1041 (2010)

    Google Scholar 

  11. King, P.C., et al.: An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J. Therm. Spray Technol. 19(3), 620–634 (2010)

    Google Scholar 

  12. Dremov, V., Petrovtsev, A., Sapozhnikov, P., Smirnova, M., Preston, D.L., Zocher, M.: Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper. Phys. Rev. B 74(14), 110–144.2 (2006)

    Google Scholar 

  13. Schmid, E.: Beitrage zur physic und metallographi des magnesiums. Z. Elektrochem. 37(8–9), 447–459 (1931)

    Google Scholar 

  14. Nabarro, F.R.N., Basinski, Z.S., Holt, D.B.: The plasticity of pure single crystals. Adv. Phys. 13(50), 193–323 (1964)

    Google Scholar 

  15. Kocks, U.F., Tome, C., Wenk, H.R.: Texture Anisotropy: Preferred Orientation in Polycrystals and Their Effects on Material Properties. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  16. Necker, C.T., Doherty, R.D., Rollett, A.D.: Quantitative measurement of the development of recrystallization texture in OFE copper. Texture Stress Microstruct. 14, 635–640 (1991)

    Google Scholar 

  17. Lange, H., Lucke, K.: Storungen der gleitung bei aluminiumein kristallen, I. untersuchung der verfestigung und des laue-asterismus. Z. Metallk. 44, 183–191 (1953)

    Google Scholar 

  18. Diehl, J.: Zugverformung von kupfer-einkristallen. Z. Metallk 47, 331–343 (1956)

    Google Scholar 

  19. Davis, R.S., Fleischer, R.L., Livingston, J.D., Chalmers, B.: The effect of orientation on the plastic deformation of aluminum single crystals and bicrystals. J. Met. 9, 136–140 (1957)

    Google Scholar 

  20. Haasen, P.: Plastic deformation of nickel single crystals at low temperatures. Philos. Mag. J. Theor. Exp. Appl. Phys. 3, 384–418 (1958)

    Google Scholar 

  21. Staubwasser, W.: Uber die Verfestigung von aluminium einkristallen (99.99% Al) und lhre deutung. Acta Metall. 7, 43–50 (1959)

    Google Scholar 

  22. Driver, J.H., Jensen, D.J., Hansen, N.: Large strain deformation structures in aluminum crystals with rolling texture orientations. Acta Metall. Mater. 42(8), 3105–3114 (1994)

    Google Scholar 

  23. Follansbee, P.S., Gray, G.T.: The response of single crystal and polycrystal nickel to quasistatic and shock deformation. Int. J. Plast. 7, 651–660 (1991)

    Google Scholar 

  24. Arakere, N.K., Swanson, G.: Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys. J. Eng. Gas Turbines Power 124, 161–176 (2002)

    Google Scholar 

  25. Horstemeyer, M.F., Baskes, M.I., Godfrey, A., Hughes, D.A.: A large deformation atomistic study examining crystal orientation effects on the stress–strain relationship. Int. J. Plast. 18, 203–229 (2002)

    MATH  Google Scholar 

  26. Potirniche, G.P., Hearndon, J.L., Horstemeyer, M.F., Ling, X.W.: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast. 22(4), 921–942 (2006)

    MATH  Google Scholar 

  27. Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(10), 1990–2015 (2008)

    MATH  Google Scholar 

  28. Dou, Y.-Q., Liu, Y.-C.: A multiscale study of single crystal copper plate with octal orientation struck by a nickel projectile. In: SAE Paper 2018-01-1210, Proceedings of SAE 2018 World Congress & Exhibition, Detroit, MI, USA, April 10–12 (2018)

  29. Follansbee, P., Regazzoni, G., Kocks, U.F.: The transition to drag controlled deformation in copper at high strain rates. Inst. Phys. Conf. Ser. 70, 71–80 (1984)

    Google Scholar 

  30. Johnson, J.N., Gray III, G.T., Bourne, N.K.: Effect of pulse duration and strain rate on incipient spall fracture in copper. J. Appl. Phys. 86(8), 4892–4901 (1999)

    Google Scholar 

  31. Andrade, U., Meyers, M.A., Vecchio, K.S., Chokshi, A.H.: Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall. Mater. 42(8), 3183–3195 (1994)

    Google Scholar 

  32. Derby, B.: The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 39(4), 955–962 (1991)

    Google Scholar 

  33. Gorham, D.A.: The effect of specimen dimensions on high strain rate compression measurements of copper. J. Phys. D Appl. Phys. 24(7), 14–89 (1991)

    Google Scholar 

  34. Bodner, S.R., Rajendran, A.M.: On the strain rate and temperature dependence of hardening of copper. AIP Conf. Proc. 370(1), 499–502 (1996)

    Google Scholar 

  35. Rashid, M.M., Gray III, G.T., Nemat-Nasser, S.: Heterogeneous deformations in copper single crystals at high and low strain rates. Philos. Mag. A 65(3), 707–735 (1992)

    Google Scholar 

  36. Heino, P., Ristolainen, E.: Mechanical properties of nanoscale copper under shear. Microelectron. Reliab. 40(3), 435–441 (2000)

    Google Scholar 

  37. Johansson, D., Hansson, P., Melin, S.: Stress analysis around a through crack shaped void in a single crystal copper strip coated on an infinitely stiff material using molecular dynamics. Eng. Fract. Mech. 116, 58–68 (2014)

    Google Scholar 

  38. Tucker, G.J., Tiwari, S., Zimmerman, J.A., McDowell, D.L.: Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics. J. Mech. Phys. Solids 60(3), 471–486 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Chang, W.J.: Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron. Eng. 65(1–2), 239–246 (2003)

    Google Scholar 

  40. Setoodeh, A.R., Attariani, H.: Nanoscale simulations of Bauschinger effects on a nickel nanowire. Mater. Lett. 62(27), 4266–4268 (2008)

    Google Scholar 

  41. Baskes, M.I.: The modified embedded atom method. Comput. Mater. Model., AD-Vol. 42/PVP-Vol. 294, 23–35 (1994)

  42. Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50(2), 152–158 (1997)

    Google Scholar 

  43. Lee, B.J., Ko, W.S., Kim, H.K., Kim, E.H.: The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad Comput. Coupling Phase Diagr. Thermochem. 34, 510–522 (2010)

    Google Scholar 

  44. Jelinek, B., Groh, S., Horstemeyer, M.F., Houze, J., Kim, S.G., Wagner, G.J., Moitra, A., Baskes, M.I.: Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys. Rev. B 85, 245102 (2012)

    Google Scholar 

  45. Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(4), 2727–2742 (1992)

    Google Scholar 

  46. Lee, B.-J., Shim, J., Couque, H., Baskes, M.I.: Semiempirical atomic potentials for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 112–144 (2003)

    Google Scholar 

  47. Lee, B.-J., Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(12), 8564–8567 (2000)

    Google Scholar 

  48. Lee, B.-J., Baskes, M.I., Kim, H., Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001)

    Google Scholar 

  49. Horstemeyer, M.F., Baskes, M.I., Plimpton, S.J.: Computational nanoscale plasticity simulations using embedded atom potentials. Theor. Appl. Fract. Mech. 37, 49–98 (2001)

    Google Scholar 

  50. Lee, B.-J., Shim, H.J.: Semiempirical a modified embedded atom method interatomic potential for the Cu-Ni system. Comput. Coupling Phase Diagr. Thermochem. 28, 125–132 (2004)

    Google Scholar 

  51. Dou, Y.-Q., Liu, Y.-C., Hammi, Y.: Computational investigation of high velocity penetration of copper subjected to impact from nickel projectiles. In: IMECE 2015-50241, Proceedings of ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, TX, USA, November 13–19 (2015)

  52. Dou, Y.-Q., Liu, Y.-C., Whittington, W., Miller, J.: Experimental calibration of ISV damage model constants for pure copper for high-speed impact simulation. In: IMECE2016-65690, Proceedings of ASME 2016 International Mechanical Engineering Congress & Exposition, Phoenix, AZ, USA, November 11–17 (2016)

  53. Horstemeyer, M.F., Baskes, M.I., Prantil, V.C., Philliber, J., Vonderheide, S.: A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory. Model. Simul. Mater. Sci. Eng. 11(3), 265–286 (2003)

    Google Scholar 

  54. Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J., Gullet, P.M.: A molecular dynamics study of void growth and coalescence in single crystal nickel. Int. J. Plast. 22, 257–278 (2006)

    Google Scholar 

  55. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    MATH  Google Scholar 

  56. Rose, J., Smith, J., Guinea, F., Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29(5), 2963–2969 (1984)

    Google Scholar 

  57. Rosenberg, Z., Forrestal, M.J.: Perforation of aluminum plates with conical-nose rods—additional data and discussion. J. Appl. Mech. 55(1), 236–238 (1988)

    Google Scholar 

  58. Horstemeyer, M.F., Baskes, M.I., Plimpton, S.J.: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49(20), 4363–4374 (2001)

    Google Scholar 

  59. Carlucci, D.E., Jacobson, S.S.: Ballistics: Theory and Design of Guns and Ammunition, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton (2018)

    Google Scholar 

  60. Liu, Y.-C., Dou, Y.-Q., Justin, W., Horstemeyer, S.J., Thirumalai, R.V.K.G., Williams, W.: Experimental study of high velocity penetration of an aluminum target plate by a spherical projectile. In: IMECE 2015-50243, Proceedings of ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, TX, USA, November 13–19 (2015)

  61. Liu, Y.-C., Dou, Y.-Q.: A computational study of crystal orientation effects on high strain rate performance of single crystal copper In: SAE paper 2019-01-0714, SAE 2019 World Congress Experience, Detroit, MI, USA, April 9–11 (2019)

Download references

Acknowledgements

We are grateful to Professor Carlos J. Ruestes for his help and many useful discussions on creating the atomistic models. The authors would also like to thank the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University for supporting this effort. A portion of the present study was briefly presented at SAE 2019 World Congress Experience [61].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Liu, Y., Huddleston, B. et al. A molecular dynamics study of effects of crystal orientation, size scale, and strain rate on penetration mechanisms of monocrystalline copper subjected to impact from a nickel penetrator at very high strain rates. Acta Mech 231, 2173–2201 (2020). https://doi.org/10.1007/s00707-020-02632-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02632-8

Navigation