Skip to main content
Log in

Simulation of evaporation and propulsion of small particles in a laser beam

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The technique of numerical simulation of laser surface evaporation of small particles ranging in size from tens to several millimeters falling into the field of laser radiation is developed. The interaction of a laser beam with solid or liquid particles freely flying in a gas-dispersed stream is accompanied by heating and evaporation of the material, which occurs only from the irradiated part of the particle surface. The result is a reactive force created by the laser, which depends on the characteristics of the radiation and the physical properties of the particle material. The technique allows describing the pre-threshold, near-threshold and super-threshold modes of evaporation and is designed to calculate the light propulsion force due to the vapor recoil pressure arising from the irradiated part of the particle surface in the range of Mach numbers to unity. The Meshcherskii equation is used to simulate the reactive acceleration of particles. It is shown that, in the case of a pulsed laser effect, the theory is in good agreement with experimental data on reactive acceleration of aluminum, corundum, and graphite particles. A distinctive feature of the technique is the ability to calculate the gas dynamic parameters of steam and recoil pressure in a wide range of the power density of the absorbed laser radiation from 10 to 10,000 \(\hbox {GW}/\hbox {m}^{{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Particle radius

C :

Specific heat capacities of material, drag coefficient

e :

Specific internal energy

Vu :

Particle and gas velocity

t :

Time

T :

Temperature

L :

Specific heat

m :

Particle mass

(xyz):

Cartesian system of coordinates

\((x_{\mathrm{p}} ,y_{\mathrm{p}} ,z_{\mathrm{p}})\) :

Mass center coordinate of particle

\(K_\mathrm{ab}\) :

Radiation absorption factor

p :

Pressure

R :

Gas constant, reactive force

I :

Laser beam intensity

\(I_{\mathrm{th}}\) :

Threshold laser beam intensity

\(w_{0}\) :

Beam radius

\(\gamma \) :

Ratio of gas heat capacities

\(\varepsilon \) :

Emissivity factor

\(\kappa \) :

Thermal diffusivity

\(\rho \) :

Density

\(\mu \) :

Molecular weight

\(\sigma \) :

\(5.67032 \times 10^{{-8}}\,\hbox {W}/(\hbox {m}^{{2}}\,\hbox {K}^{{4}})\), Stefan–Boltzmann constant

0:

Initial value

1:

Vapor

a :

Gas air

b :

Boiling

m :

Melting or liquid

p :

Particle

v :

Vapor

w :

Solid or solid wall

Sat:

Saturated

References

  1. Ready, J.F.: Effects of High-Power Laser Radiation. Academic Press, New York (1971)

    Google Scholar 

  2. Askar’yan, G.A., Rabinovich, M.S., Savchenko, M.M., Stepanov, U.K., Studenov, V.B.: Light-induced acceleration of substance macroparticles. Sov. Phys. JETP Lett. 5(8), 208–09 (1967)

    Google Scholar 

  3. Goela, J.S., Green, B.D.: Ablative acceleration of small particles to high velocity by focused laser radiation. J. Opt. Soc. Am. B 3(1), 8–14 (1986)

    Article  Google Scholar 

  4. Zakharov, S.D., Kazaryan, M.A., Korotkov, N.P.: Shock acceleration of particles in a laser beam. JETP Lett. 60(5), 322–24 (1994)

    Google Scholar 

  5. Brandt, M.: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Brandt Milan, editor. Woodhead Publishing, Cambridge (2016)

  6. Gulyaev, I.P., Kovalev, O.B., Pinaev, P.A., Grachev, G.N.: Optical diagnostics of radiation interaction with the powder stream laterally transported during laser cladding. Opt. Lasers Eng. 126, 105877 (2020). https://doi.org/10.1016/j.optlaseng.2019.105877

    Article  Google Scholar 

  7. Jia, Y.Z., Xiao, J., Chen, S.J., Huang, W.H.: Pulsed laser enhanced metal transfer of aluminum alloy in GMAW. Opt. Lasers Eng. 121, 29–36 (2019)

    Article  Google Scholar 

  8. Kovaleva, I.O., Kovalev, O.B.: Simulation of the acceleration mechanism by light-propulsion for the powder particles at laser direct material deposition. Opt. Laser Technol. 44, 714–15 (2012)

    Article  Google Scholar 

  9. Kovaleva, I.O., Kovalev, O.B., Zaitsev, A.V., Sergachev, D.V.: Modeling and numerical study of light-propulsion phenomena of particle acceleration in coaxial laser power cladding. Phys. Proc. 56, 439–49 (2014)

    Article  Google Scholar 

  10. Anisimov, S.I.: Vaporization of metal absorbing laser radiation. Sov. Phys. JETP 27(1), 182–83 (1968)

    Google Scholar 

  11. Bunkin, F.V., Prokhorov, A.M.: Use of laser power source to create thrust. Uspekhi Fizicheskikh Nauk 119(3), 425–446 (1976)

    Article  Google Scholar 

  12. Gladuch, G.G., Smurov, I.: Physics of Laser Materials Processing: Theory and Experiment. Springer Series in Materials Science. Springer, Berlin (2011)

    Book  Google Scholar 

  13. Délery, J.: Handbook of Compressible Aerodynamics. ONERA France (2010)

  14. Knight, C.J.: Theoretical modeling of rapid surface vaporization with back pressure. AIAA J. 17(5), 519–23 (1979)

    Article  Google Scholar 

  15. Gusarov, A.V., Smurov, I.: Target vapor interaction and atomic collisions in pulsed laser ablation. J. Phys. D Appl. Phys. 34, 1147–56 (2001)

    Article  Google Scholar 

  16. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  17. Aden, M., Beyer, E., Herziger, G., Kunze, H.: Laser-induced vaporization of a metal surface. J. Phys. D Appl. Phys. 25, 57–65 (1992)

    Article  Google Scholar 

  18. Kovalev, O.B.: Analysis of the influence of radiation polarization type on the absorptive capacity and propulsive motion of microparticles in the light field of \(CO_{\rm 2}\)laser. Thermophys. Aeromech. 25(4), 555–563 (2018)

    Article  Google Scholar 

  19. Mesherskii, I.V.: Works on Mechanics of Bodies with Variable Mass. Moscow (1949)

  20. Walsh, M.J.: Drag coefficient equation for small particles in high speed flows. AIAA J. 13, 1526–28 (1975)

    Article  Google Scholar 

  21. Henderson, C.B.: Drag coefficient of spheres in continuum and rarefied flows. AIAA J. 14(6), 707–708 (1976)

    Article  Google Scholar 

  22. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Parts I and II. Chem. Eng. Prog. 48, 173–180 (1952)

    Google Scholar 

  23. Askarjan, G.A.: Particle motion in a laser beam. Sov. Phys. Uspekhi 16(3), 414–16 (1973)

    Article  Google Scholar 

  24. Waniek, R.W., Jarmuz, P.J.: Acceleration of microparticles by laser-induced vapor emission. Appl. Phys. Lett. 12(2), 52–54 (1968)

    Article  Google Scholar 

  25. Bukatyj, V.I., Kronberg, T.K.: Light-induced propulsion of a carbon particle in the powerful laser field. Izv. Altaj. Gos. Univ. 1(1), 50–53 (1996). (in Russian)

    Google Scholar 

  26. Beliko, A.V.: Dynamics of \(\text{ Al }_{\rm 2}\text{ O }_{\rm 3}\) particles accelerated in the field of a submillisecond pulse from a YAG: Er laser. Technol. Phys. 50(5), 666–68 (2005)

    Article  Google Scholar 

  27. Boyden, S.B., Zhang, Y.: Temperature and wavelength-dependent spectral absorptivities of metallic materials in the infrared. J. Thermophys. Heat Transf. 20(1), 9–15 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully appreciates the financial support from the Russian Scientific Fund (Contract No. 18-19-00430). The research was partly carried out within the framework of the Program of Fundamental Scientific Research of the state academies of sciences in 2013-2020 (project No. AAAA-A17-117030610120-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Kovalev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The drag coefficient of a solid streamlined

Appendix: The drag coefficient of a solid streamlined

The Walsh [20] and Henderson [21] approximations are used to calculate the drag coefficient of a body moving in a gas depending on the Reynolds number and Mach number:

$$\begin{aligned}&C_{D} =\left\{ {\begin{array}{llll} C_{d1} \left( {{\mathrm{Re}}_{\mathrm{p}},M_{\mathrm{p}} } \right) ,&{}\quad 0\le M_{\mathrm{p}} <1; \\ C_{d1} \left( {{\mathrm{Re}}_{\mathrm{p}},M_{\mathrm{p}} } \right) +\frac{4}{3}\left( {M_{\mathrm{p}} -1} \right) \left( {C_{d2} \left( {{\mathrm{Re}}_{\mathrm{p}},1.75} \right) -C_{d1} \left( {{\mathrm{Re}}_{\mathrm{p}},1} \right) } \right) , &{}\quad {1\le M_{\mathrm{p}} \le 1.75}; \\ C_{d2} \left( {{\mathrm{Re}}_{\mathrm{p}},M_{\mathrm{p}} } \right) ,&{}\quad {M_{\mathrm{p}} >1.75;} \\ \end{array}} \right. \\&C_{d1} \left( {{\mathrm{Re}}_{\mathrm{p}},M_{\mathrm{p}} } \right) =\frac{24}{{\mathrm{Re}}_{\mathrm{p}} +M_{\mathrm{p}} \sqrt{0.5\gamma } A}+\exp \left( {-0.5\frac{M_{\mathrm{p}} }{\sqrt{{\mathrm{Re}}_{\mathrm{p}} } }} \right) \\&\quad {\times \,\left( {\frac{4.5+0.38\left( {0.03{\mathrm{Re}}_{\mathrm{p}} +0.48\sqrt{{\mathrm{Re}}_{\mathrm{p}} } } \right) }{1+0.03{\mathrm{Re}}_{\mathrm{p}} +0.48\sqrt{{\mathrm{Re}}_{\mathrm{p}} } }+0.1M_{\mathrm{p}}^{2} +0.2M_{\mathrm{p}}^{8} } \right) } +B; \\&A=4.33+\frac{3.65-1.53}{1+0.353}\exp \left( {-0.247\frac{{\mathrm{Re}}_{\mathrm{p}} }{M_{\mathrm{p}} \sqrt{0.5\gamma } }} \right) ; \quad B=0.6M_{\mathrm{p}} \sqrt{0.5\gamma } \left( {1-\exp \left( {-\frac{{\mathrm{Re}}_{\mathrm{p}} }{M_{\mathrm{p}} }} \right) } \right) ;\\&C_{d2} \left( {{\mathrm{Re}}_{\mathrm{p}},M_{\mathrm{p}} } \right) =\frac{0.9+{0.34} \big / {M_{\mathrm{p}}^{2} }}{1+1.86\sqrt{{M_{\mathrm{p}} } \big / {{\mathrm{Re}}_{\mathrm{p}} }} }+1.86\sqrt{{M_{\mathrm{p}} } \big / {{\mathrm{Re}}_{\mathrm{p}} }} \frac{A_{1} }{B_{1} };\\&A_{1} =2+\frac{2}{\left( {M_{\mathrm{p}} \sqrt{0.5\gamma } } \right) ^{2}}+\frac{1.058}{M_{\mathrm{p}} \sqrt{0.5\gamma } }-\frac{1}{\left( {M_{\mathrm{p}} \sqrt{0.5\gamma } } \right) ^{4}}; \quad B_{1} =1+1.86\sqrt{{M_{\mathrm{p}} } \big / {{\mathrm{Re}}_{\mathrm{p}}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, O.B. Simulation of evaporation and propulsion of small particles in a laser beam. Acta Mech 231, 2273–2285 (2020). https://doi.org/10.1007/s00707-020-02651-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02651-5

Navigation