Skip to main content
Log in

Genetic relations among and within wild and cultivated Thymus species based on morphological and molecular markers

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, the diversity of 11 Thymus species was assessed using molecular and morphological markers. Essential oil content and morphological traits were also investigated during two agronomic years. The result of the analysis of variance showed considerable differences among morphological traits. In the first and second years, the essential oil content of the species varied from 0.63 to 1.94% and 0.86 to 2.34%, respectively. T. vulgaris and T. migricus showed the highest essential oil content in two agronomic years. In this research, nine ISSR primers were also used to amplify 151 polymorphic bands in 77 accessions belonging to 11 Thymus species. Cluster and principal component (PCA) analyses classified the species in three major groups. Among the species, T. vulgaris and T. fedtschenkoi presented relatively higher genetic distance in comparison with other species. Analysis of molecular variance (AMOVA) revealed that 72.34% of the total variation was belonged to within-species variation, while 27.66% was associated among the species. High gene flow (Nm = 1.11) and genetic differentiation (Gst = 0.31) were also observed among the species. T. transcaspicus exhibited the highest genetic variation (0.19), polymorphism % (57.69%), and Shannon index (0.29). The STRUCTURE analysis also showed a high admixture of Thymus species that might be originated from a high rate of natural hybridization. Finally, based on molecular and morphological information, T. vulgaris and T. carmanicus can be suggested as good candidate species for further breeding programs in Thymus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham EM, Aftzalanidou A, Ganopoulos I, Osathanunkul M, Xanthopoulou A, Avramidou E, Sarrou E, Aravanopoulos F, Madesis P (2018) Genetic diversity of Thymus sibthorpii Bentham in mountainous natural grasslands of Northern Greece as related to local factors and plant community structure. Ind Crops Prod 111:651–659

    Article  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Arabsalehi F, Rahimmalek M, Ehtemam MH (2018) Phytochemical and morphological variation of Stachys lavandulifolia Vahl. populations as affected by genotype× year interaction. Ind Crops prod 112:342–352

    Article  CAS  Google Scholar 

  • Arsenijević J, Drobac M, Šoštarić I, Jevđović R, Živković J, Ražić S, Moravčević Đ, Maksimović Z (2019) Comparison of essential oils and hydromethanol extracts of cultivated and wild growing Thymus pannonicus All. Ind Crops Prod 130:162–169

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fadaei Heidari E, Rahimmalek M, Mohammadi S, Ehtemam MH (2016) Genetic structure and diversity of ajowan (Trachyspermum ammi) populations based on molecular, morphological markers, and volatile oil content. Ind Crops Prod 92:186–196

    Article  CAS  Google Scholar 

  • Ghafouri F, Rahimmalek M (2018) Genetic structure and variation in different Iranian myrtle (Myrtus communis L.) populations based on morphological, phytochemical and molecular markers. Ind Crops Prod 123:489–499

    Article  CAS  Google Scholar 

  • Ghasemi Pirbalouti A, Rahimmalek M, Malekpoor F, Karimi A (2011) Variation in Antibacterial Activity, thymol and carvacrol Contents of Wild Populations of 'Thymus daenensis subsp. daenensis' Celak. Plant Omics 4:209

    CAS  Google Scholar 

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Hadian J, Bigdeloo M, Nazeri V, Khadivi-Khub A (2014) Assessment of genetic and chemical variability in Thymus caramanicus. Mol Biol Rep 41:3201–3210

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Hadian J, Esmaeili H, Kanani MR, Mirjalili MH, Sarkhosh A (2019) Introduction of Thymus daenensis into cultivation: Analysis of agro-morphological, phytochemical and genetic diversity of cultivated clones. Ind Crops Prod 131:14–24

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles researches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Kumar J, Heikrujam M, Sharma K, Agrawal V (2019) SRAP and SSR marker-assisted genetic diversity, population structure analysis and sex identification in Jojoba (Simmondsia chinensis). Ind Crops Prod 133:118–132

    Article  Google Scholar 

  • Llorens L, Llorens-Molina JA, Agnello S, Boira H (2014) Geographical and environment-related variations of essential oils in isolated populations of Thymus richardii Pers. in the Mediterranean basin. Biochem Syst Ecol 56:246–254

    Article  CAS  Google Scholar 

  • Lu Y, Boswell M, Boswell W, Kneitz S, Klotz B, Savage M, Salinas R, Marks R, Regneri J, Postlethwait J, Warren WC (2018) Gene expression variation and parental allele inheritance in a Xiphophorus interspecies hybridization model. PLoS Genet 14:e1007875

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Mohammadi A, Nazari H, Imani S, Amrollahi H (2014) Antifungal activities and chemical composition of some medicinal plants. J Mycol Med 24:e1–e8

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirbalouti AG, Hashemi M, Ghahfarokhi FT (2013) Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Ind Crops Prod 48:43–48

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimmalek M, Bahreininejad B, Khorrami M, Tabatabaei BES (2009) Genetic variability and geographic differentiation in Thymus daenensis subsp. daenensis, an endangered medicinal plant, as revealed by inter simple sequence repeat (ISSR) markers. Biochem Genet 47:831

    Article  CAS  PubMed  Google Scholar 

  • Rasooli I, Rezaei MB, Allameh A (2006) Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 10:236–241

    Article  PubMed  Google Scholar 

  • Ray A, Jena S, Haldar T, Sahoo A, Kar B, Patnaik J, Ghosh B, Panda PC, Mahapatra N, Nayak S (2019) Population genetic structure and diversity analysis in Hedychium coronarium populations using morphological, phytochemical and molecular markers. Ind Crops Prod 132:118–133

    Article  CAS  Google Scholar 

  • Rechinger KH (1963) Flora Iranica No. 158. Akademische Druke-U, Verlagsanstalt, Wien Austria, pp 49–71

  • Rohlf F (1998) NTSYS-pc Version 2.0. Numerical taxonomy and multivariate analysis system. Exeter Software Setauket, New York

  • Rustaiee AR, Yavari A, Nazeri V, Shokrpour M, Sefidkon F, Rasouli M (2013) Genetic diversity and chemical polymorphism of some Thymus species. Chem Biodivers 10:1088–1098

    Article  CAS  PubMed  Google Scholar 

  • Sarrou E, Tsivelika N, Chatzopoulou P, Tsakalidis G, Menexes G, Mavromatis A (2017) Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica 213:104

    Article  Google Scholar 

  • Sostaric I, Liber Z, Grdisa M, Marin PD, Stevanovic ZD, Satovic Z (2012) Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora 207:654–661

    Article  Google Scholar 

  • Talebi M, Rahimmalek M, Norouzi M (2015) Genetic diversity of Thymus daenensis subsp. daenensis using SRAP markers. Biologia 70:453–459

    Article  Google Scholar 

  • Tammar S, Salem N, Bettaieb Rebey I, Sriti J, Hammami M, Khammassi S, Marzouk B, Ksouri R, Msaada K (2019) Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J Essent Oil Res 31:129–137

    Article  CAS  Google Scholar 

  • Tohidi B, Rahimmalek M, Arzani A, Trindade H (2020) Sequencing and variation of terpene synthase gene (TPS2) as the major gene in biosynthesis of thymol in different Thymus species. Phytochem 169:112126

    Article  Google Scholar 

  • Tohidi B, Rahimmalek M, Arzani A (2017) Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem 220:153–161

    Article  CAS  PubMed  Google Scholar 

  • Tohidi B, Rahimmalek M, Trindade H (2019) Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind Crops Prod 134:89–99

    Article  CAS  Google Scholar 

  • Trindade H, Costa MM, Sofia BLA, Pedro LG, Figueiredo AC, Barroso JG (2008) Genetic diversity and chemical polymorphism of Thymus caespititius from Pico, Sao Jorge and Terceira islands (Azores). Biochem Syst Ecol 36:790–797

    Article  CAS  Google Scholar 

  • Trindade H, Costa MM, Lima SB, Pedro LG, Figueiredo AC, Barroso JG (2009) A combined approach using RAPD, ISSR and volatile analysis for the characterization of Thymus caespititius from Flores, Corvo and Graciosa islands (Azores, Portugal). Biochem Syst Ecol 37:670–677

    Article  CAS  Google Scholar 

  • Trindade H, Pedro LG, Figueiredo AC, Barroso JG (2018) Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind crops prod 124:530–547

    Article  CAS  Google Scholar 

  • Verma KS, ul Haq S, Kachhwaha S, Kothari SL (2017) RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7:288

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousefi V, Najaphy A, Zebarjadi A, Safari H (2015) Molecular characterization of Thymus species using ISSR markers. J Anim Plant Sci 8:55

    Google Scholar 

Download references

Acknowledgements

The authors appreciate their gratitude to Isfahan University of Technology, Iran for their financial support. We also thank Dr. Behnaz Tohidi for editing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimmalek.

Ethics declarations

Ethical statement

The manuscript has not been previously published, is not currently submitted for review to any other journal, and will not be submitted elsewhere before one decision is made.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarfaraz, D., Rahimmalek, M., Saeidi, G. et al. Genetic relations among and within wild and cultivated Thymus species based on morphological and molecular markers. 3 Biotech 10, 289 (2020). https://doi.org/10.1007/s13205-020-02274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02274-6

Keywords

Navigation