Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 11, 2019

Three-dimensional connected groups of automorphisms of toroidal circle planes

  • Brendan Creutz , Duy Ho EMAIL logo and Günter F. Steinke
From the journal Advances in Geometry

Abstract

We contribute to the classification of toroidal circle planes and flat Minkowski planes possessing three-dimensional connected groups of automorphisms. When such a group is an almost simple Lie group, we show that it is isomorphic to PSL(2, ℝ). Using this result, we describe a framework for the full classification based on the action of the group on the point set.

MSC 2010: 51H15; 51B20

Acknowledgements

The authors would like to thank the referee for the careful reading and helpful suggestions, especially the comments on Lemma 3.2.

  1. Communicated by: R. Löwen

  2. Funding: The second author was supported by a University of Canterbury Doctoral Scholarship.

References

[1] R. Artzy, H. Groh, Laguerre and Minkowski planes produced by dilatations. J. Geom. 26 (1986), 1–20. MR837764 Zbl 0598.5100410.1007/BF01221003Search in Google Scholar

[2] W. Benz, Vorlesungen über Geometrie der Algebren. Springer 1973. MR0353137 Zbl 0258.5002410.1007/978-3-642-88670-6Search in Google Scholar

[3] L. E. J. Brouwer, Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie. Math. Ann. 67 (1909), 246–267. MR1511528 JFM 40.0194.0110.1007/BF01450182Search in Google Scholar

[4] B. Creutz, D. Ho, G. F. Steinke, On automorphism groups of toroidal circle planes. J. Geom. 109 (2018), Art. 15, 13 pages. MR3763105 Zbl 1396.5100610.1007/s00022-018-0420-8Search in Google Scholar

[5] E. Ghys, Groups acting on the circle. Enseign. Math. (2) 47 (2001), 329–407. MR1876932 Zbl 1044.37033Search in Google Scholar

[6] H. Groh, ℝ2-planes with 2-dimensional point transitive automorphism group. Abh. Math. Sem. Univ. Hamburg48 (1979), 171–202. MR537455 Zbl 0415.5100710.1007/BF02941299Search in Google Scholar

[7] H. Groh, R2-planes with point transitive 3-dimensional collineation group. Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 173–282. MR66265310.1016/S1385-7258(82)80009-7Search in Google Scholar

[8] H. Groh, M. F. Lippert, H.-J. Pohl, ℝ2-planes with 3-dimensional automorphism group fixing precisely a line. J. Geom. 21 (1983), 66–96. MR731530 Zbl 0528.5100410.1007/BF01918132Search in Google Scholar

[9] D. Ho, On the classification of toroidal circle planes. PhD thesis, University of Canterbury, 2017.Search in Google Scholar

[10] H. Karzel, Circle geometry and its application to code theory. In: Geometries, codes and cryptography (Udine, 1989), volume 313 of CISM Courses and Lect., 25–75, Springer 1990. MR1140927 Zbl 0707.5101610.1007/978-3-7091-2838-1_2Search in Google Scholar

[11] A. Navas, Groups of circle diffeomorphisms. University of Chicago Press, Chicago, IL 2011. MR2809110 Zbl 1236.3700210.7208/chicago/9780226569505.001.0001Search in Google Scholar

[12] A. L. Onishchik, E. B. Vinberg, Foundations of Lie theory. In: Lie groups and Lie algebras, I, volume 20 of Encyclopaedia Math. Sci., 1–94, 231–235, Springer 1993. MR1306738 Zbl 0781.2200310.1007/978-3-642-57999-8Search in Google Scholar

[13] B. Polster, Toroidal circle planes that are not Minkowski planes. J. Geom. 63 (1998), 154–167. MR1651572 Zbl 0928.5101110.1007/BF01221246Search in Google Scholar

[14] B. Polster, G. Steinke, Geometries on surfaces, volume 84 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2001. MR1889925 Zbl 0995.5100410.1017/CBO9780511549656Search in Google Scholar

[15] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes, volume 21 of De Gruyter Expositions in Mathematics. De Gruyter 1995. MR1384300 Zbl 0851.5100310.1515/9783110876833Search in Google Scholar

[16] H. Salzmann, T. Grundhöfer, H. Hähl, R. Löwen, The classical fields, volume 112 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2007. MR2357231 Zbl 1173.0000610.1017/CBO9780511721502Search in Google Scholar

[17] H. R. Salzmann, Topological planes. Advances in Math. 2 (1967), 1–60. MR0220135 Zbl 0153.2160110.1016/S0001-8708(67)80002-1Search in Google Scholar

[18] A. Schenkel, Topologische Minkowski-Ebenen. PhD thesis, Universität Erlangen-Nürnberg, 1980.Search in Google Scholar

[19] G. F. Steinke, A family of flat Minkowski planes admitting 3-dimensional simple groups of automorphisms. Adv. Geom. 4 (2004), 319–340. MR2071809 Zbl 1067.5100810.1515/advg.2004.019Search in Google Scholar

[20] G. F. Steinke, Modified classical flat Minkowski planes. Adv. Geom. 17 (2017), 379–396. MR3680361 Zbl 1387.5101510.1515/advgeom-2017-0026Search in Google Scholar

Received: 2018-09-14
Revised: 2018-12-27
Published Online: 2019-09-11
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2019-0031/html
Scroll to top button