Skip to main content
Log in

The Role of Parental Origin of Chromosomes in the Instability of the Somatic Genome in Drosophila Brain Cells and Memory Trace Formation in Norm and Stress

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

It is impossible to imagine the nervous system without controllable genome instability, resulting in brain somatic mosaicism, one of the basic mechanisms of structural and functional heterogeneity of neurons. The source of such an instability is the presence of “hot spots” (repeating DNA sequences, provoking nonallelic recombination) and double-strand (DS) DNA breaks in the genome that occur in the matrix processes and physiological activity of neurons and are involved in memory formation and learning. The realization of the “norm–pathology” scenario is under epigenetic control; in particular, it depends on the parental effect of genome origin and stress. In this work, using the Williams model of drosophila carrying the agnts3 mutation in the gene for LIMK1 (the key enzyme of actin remodeling) using reciprocal hybrids with wild-type Canton-S line, we studied the contribution of maternal and paternal genomes in processes of learning and memory, as well as the formation of chromosome rearrangement in neuroblasts, determined by DS breaks and disorders of mitotic apparatus in norm and in exposure to stress impact via weak static magnetic field. The prevalent role of paternal genome in memory trace formation is shown. A patroclinous inheritance is established for frequencies of chromosome rearrangements and DS breaks, as well as chromatid bridges in anaphase neuroblasts at stress in the case of paternal agnts3 line. In the breed of agnts3 females, mitosis disorders are inherited via the maternal type. Based on previous research, we revealed microRNA contexts that can make patroclinous effects possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Baker, B.S., Smith, D.A., and Gatti, M., Region-specific effects on chromosome integrity of mutations at essential loci in Drosophila melanogaster (mutagen-sensitive mutants/chromosome aberrations/mitotic cell cycle mutants/late larval lethals), Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, pp. 1205–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Binhi, V.N. and Chernavsky, D.S., Stochastic resonance of magnetosomes fixed in the cytoskeleton, Biophysics (Moscow), 2005, vol. 50, no. 4, pp. 599–603.

    Google Scholar 

  3. Bogdanov, V.A., Sakuta, G.A., Stefanov, V.E., Surma, S.V., Zakharov, G.A., and Shchegolev, B.F., Impact of weakened geomagnetic field on proliferative activity and viability of K562 and C3H10T1/2 cells, Biophysics (Moscow), 2018, vol. 63, no. 6, pp. 940–945.

    Article  CAS  Google Scholar 

  4. Buchachenko, A.L., Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine, Usp. Khim., 2014, vol. 83, no. 1, pp. 1–12.

  5. Castel, S.E. and Martienssen, R.A., RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat. Rev. Genet., 2013, vol. 14, pp. 100–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chandra, S., Khatoon, R., Pandey, A., Saini, S., Vimal, D., Singh, P., and Chowdhuri, D.K., Dme-miR-314-3p modulation in Cr(VI) exposed Drosophila affects DNA damage repair by targeting mus309, J. Hazard Mater., 2016, vol. 304, pp. 360–369.

    Article  CAS  PubMed  Google Scholar 

  7. Collette, J.C., Chen, X.-N., Mills, D.L., Galaburda, A.M., Reiss, A.L., Bellugi, U., and Korenberg, J.R., , William’s syndrome: gene expression is related to parental origin and regional coordinate control, J. Hum. Genet., 2009, vol. 54, pp. 193–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frangiskakis, J.M., Ewart, A.K., Morris, C.A., Mervis, C.B., Bertrand, J., Robinson, B.F., Klein, B.P., Ensing, G.J., Everett, L.A., and Green, E.D., LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition, Cell, 1996, vol. 86, pp. 59–69.

    Article  CAS  PubMed  Google Scholar 

  9. Gatti, M., Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 1377–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gheldof, N., Witwicki, R.M., Migliavacca, E., Leleu, M., Didelot, G., Harewood, L., Rougemont, J., and Reymond, A., Structural variation-associated expression changes are paralleled by chromatin architecture modifications, PLoS One, 2013, vol. 8, no. 11. e79973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giet, R. and Glover, D.M., Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis, J. Cell Biol., 2001, vol. 152, pp. 669–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodwin, P.R., Meng, A., Moore, J., Hobin, M., Fulga, T.A., Van Vactor, D., and Griffith, L.C., Micro-RNAs regulate sleep and sleep homeostasis in Drosophila,Cell Rep., 2018, vol. 23, pp. 3776–3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gregan, J., Polakova, S., Zhang, L., Tolić-Nørrelykke, I.M., and Cimini, D., Merotelic kinetochore attachment: causes and effects, Trends Cell Biol., 2011, vol. 21, pp. 374–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hawley, B.R., Lu, W.-T., Wilczynska, A., and Bushell, M., The emerging role of RNAs in DNA damage repair, Cell Death Differ., 2017, vol. 24, pp. 580–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heardand, E. and Martienssen, R.A., Transgenerational epigenetic inheritance: myths and mechanisms, Cell, 2014, vol. 157, pp. 95–109.

    Article  CAS  Google Scholar 

  16. Heo, J., Redox control of GTPases: from molecular mechanisms to functional significance in health and disease, Antioxid. Redox Signal., 2011, vol. 14, pp. 689–724.

    Article  CAS  PubMed  Google Scholar 

  17. Hurst, V., Shimada, K., and Gasser, S.M., Nuclear actin and actin-binding proteins in DNA repair, Trends Cell Biol., 2019, vol. 29, no. 6, pp. 462–476.

    Article  CAS  PubMed  Google Scholar 

  18. Iourov, I.Y., Vorsanova, S.G., and Yurov, Y.B., Chromosomal mosaicism goes global, Mol. Cytogenet., 2008, vol. 1, pp. 1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kamyshev, N.G., Iliadi, K.G., and Bragina, J.V., Drosophila conditioned courtship: two ways of testing memory, Learn. Mem. Cold Spring Harb., 1999, vol. 6, pp. 1–20.

    CAS  Google Scholar 

  20. Keller, C. and Bühler, M., Chromatin-associated ncRNA activities, Chromosome Res., 2013, vol. 21, pp. 627–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loviglio, M.N., Leleu, M., and Reymond, A., Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes, Mol. Psychiatry, 2017, vol. 22, pp. 836–849.

    Article  CAS  PubMed  Google Scholar 

  22. Luis, A., Jurado, P., Peoples, R., Kaplan, P., Ben, C., Hame, J., and Francke, U., Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth, Am. J. Hum. Genet., 1996, vol. 59, pp. 781–792.

    Google Scholar 

  23. Ma, Q., de Cuevas, M., and Matunis, E.L., Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary, Development, 2016, vol. 143, pp. 754–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mäki-Jouppila, J.H.E., Pruikkonen, S., Tambe, M.B., Aure, M.R., Halonen, T., Salmela, A.-L., Laine, L., Børresen-Dale, A.-L., and Kallio, M.J., MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase, Mol. Oncol., 2015, vol. 9, pp. 1056–1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Maniatis, S., Classical conditioning alters short noncoding RNA expression in Drosophila, Doctoral Dissertation, Harvard University, Graduate School Arts Sci., 2017.

  26. Marrone, A.K., Edeleva, E.V., Kucherenko, M.M., Hsiao, N.-H., and Shcherbata, H.R., Dg–Dys–Syn1 signaling in Drosophila regulates the microRNA profile, BMC Cell Biol., 2012, vol. 13, p. 26. https://doi.org/10.1186/1471-2121-13-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McKinnon, P.J., Maintaining genome stability in the nervous system, Nat. Neurosci., 2013, vol. 16, pp. 1523–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Medvedeva, A.V., Molotkov, D.A., Nikitina, E.A., Popov, A.V., Karagodin, D.A., Baricheva, E.M., and Savvateeva-Popova, E.V., Systemic regulation of genetic and cytogenetic processes by a signal cascade of actin remodeling: locus agnostic in Drosophila, Russ. J. Genet., 2008, vol.  44, no. 6, pp. 771–783.

  29. Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W.Y., MacDonald, J.F., Wang, J.Y., Falls, D.L., and Jia, Z., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice, Neuron, 2002, vol. 35, pp. 121–133.

    Article  CAS  PubMed  Google Scholar 

  30. Mohammed, J., Bortolamiol-Becet, D., Flynt, A.S., Gronau, I., Siepel, A., and Lai, E.C., Adaptive evolution of testis-specific, recently evolved, clustered miRNAs in Drosophila,RNA, 2014, vol. 20, pp. 1195–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikitina, E.A., Medvedeva, A.V., Zakharov, G.A., and Savvateeva-Popova, E.V., The Drosophila agnostic locus: involvement to formation of cognitive defects in Williams syndrome, Acta Naturae, 2014a, vol. 6, no. 2, pp. 53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nikitina, E.A., Medvedeva, A.V., Zakharov, G.A., and Savvateeva-Popova, E.V., Williams syndrome as a model for elucidation of the pathway genes—the brain-cognitive functions: genetics and epigenetics, Acta Naturae, 2014b, vol. 6, no. 1, pp. 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikitina, E.A., Medvedeva, A.V., Gerasimenko, M.S., Pronikov, V.S., Surma, S.V., Shchegolev, B.F., and Savvateeva-Popova, E.V., Weakened geomagnetic field: impact on transcriptional activity of the genome, learning and memory formation in D. melanogaster, Zh. Vyssh. Nervn. Deyat.im.I.P. Pavlova, 2017, vol. 67, no. 2, pp. 246–256.

    Google Scholar 

  34. Nikitina, E.A., Medvedeva, A.V., Zhuravlev, A.V., Vasilieva, S.A., Tokmatcheva, E.V., Zakharov, G.A., and Savvateeva-Popova, E.V., Formation of nuclear spatial organization: role of Drosophila limk1 gene, Tsitologiia, 2018, vol. 60, no. 11, pp. 895–898.

    Article  Google Scholar 

  35. Peng, J.C. and Karpen, G.H., H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability, Nat. Cell Biol., 2007, vol. 9, pp. 25–35.

    Article  CAS  PubMed  Google Scholar 

  36. Portin, P., Mus309 mutation, defective in DNA double-strand break repair, affects intergenic but not intragenic meiotic recombination in Drosophila melanogaster,Genet. Res., 2005, vol. 86, pp. 185–191.

    Article  CAS  PubMed  Google Scholar 

  37. Savvateeva-Popova, E.V., Popov, A.V., Grossman, A.I., Nikitina, E.A., Medvedeva, A.V., Peresleni, A.I., Korochkin, L.I., Moe, G., Davidowitz, E., Pyatkov, K.I., Myasnyankina, E., Zatsepina, O.G., Schostak, N., Zelentsova, E.S., and Evgen’ev, M.B., Pathogenic chaperone-like RNA induces congophilic aggregates and facilitates neurodegeneration in Drosophila,Cell Stress Chaperones, 2007, vol. 12, pp. 9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savvateeva-Popova, E.V., Popov, A.V., Grossman, A., Nikitina, E.A., Medvedeva, A.V., Peresleni, A.I., Molotkov, D.A., Kamyshev, N.G., Pyatkov, K.I., Zatsepina, O.G., Schostak, N., Zelentsova, E.S., Pavlova, G., Panteleev, D., Riederer, P., and Evgen’ev, M.B., Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila,J. Neuronal Transmission, 2008, vol. 115, pp. 1629–1642.

    Article  CAS  Google Scholar 

  39. Savvateeva-Popova, E.V., Zhuravlev, A.V., Brázda, V., Zakharov, G.A., Kaminskaya, A.N., Medvedeva, A.V., Nikitina, E.A., Tokmatcheva, E.V., Dolgaya, J.F., Kulikova, D.A., Zatsepina, O.G., Funikov, S.Y., Ryazansky, S.S., and Evgen’ev, M.B., Drosophila model for the analysis of genesis of LIM-kinase 1-dependent Williams–Beuren syndrome cognitive phenotypes: INDELs, transposable elements of the Tc1/Mariner superfamily and microRNAs, Front. Genet., 2017, vol. 8, p. 123. https://doi.org/10.3389/fgene.2017.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serebryannyy, L.A., Cruz, C.M., and Primal de Lanerolle, A role for outbreaks in HDAC 1 and 2 regulation, Sci. Rep., 2016, vol. 6, p. 28460. https://doi.org/10.1038/srep28460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shinji Misu, Takebayashi, M., and Kei Miyamoto, Nuclear actin in development and transcriptional reprogramming, Front Genet., 2017, vol. 8, p. 27. https://doi.org/10.3389/fgene.2017.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slimen, I.B., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., and Abdrabbah, M., Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage, Int. J. Hyperthermia, 2014, vol. 30, pp. 513–523.

    Article  PubMed  CAS  Google Scholar 

  43. Sokal, R.R. and Rohlf, F.J., Biometry: The Principles and Practice of Statistics in Biological Research, New York: Freeman, 1995, pp. 803–820.

    Google Scholar 

  44. Spivak, I.M., Kuranova, M.L., Mavropulo-Stolyarenko, G.R., Surma, S.V., Shchegolev, B.F., and Stefanov, V.E., Cell response to extremely weak static magnetic fields, Biophysics (Moscow), 2016, vol. 61, no. 3, pp. 435–439.

    Article  CAS  Google Scholar 

  45. Suberbielle, E., Sanchez, P., and Kravitz, A., Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-b, Nat. Neurosci., 2013, vol. 16, pp. 613–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Leeuwen, L.A. and Hoozemans, J.J., Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer’s disease, Acta Neuropathol., 2015, vol. 129, pp. 511–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Varona, L., Munila, S., Casselas, J., Moreno, C., and Altarriba, J., Consequences of paternally inherited effects on the genetic evaluation of maternal effects, Gen. Select. Evol., 2015, vol. 47, p. 63. https://doi.org/10.1534/g3.115.016725

    Article  Google Scholar 

  48. Verheijen B.M., Vermulst, M., and van Leeuwen, F.W., Somatic mutations in neurons during aging and neurodegeneration, Acta Neuropathol., 2018, vol. 135, pp. 811–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wittkopp, P.J., Haerum, B.K., and Clark, A.G., Parent-of-origin effects on mRNA expression in Drosophila melanogaster not caused by genomic imprinting, Genetics, 2006, vol. 173, pp. 1817–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue, Y. and Zhang, Y., Emerging roles for microRNA in the regulation of Drosophila circadian clock, BMC Neurosci., 2018, vol. 19, p. 1. https://doi.org/10.1186/s12868-018-0401-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zayats, T., Johansson, S., and Haavik, J., Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes?, Behav. Brain. Funct., 2015, vol. 11, p. 33. https://doi.org/10.1503/jpn.100173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Program of Basic Scientific Research of State Academies for 2013–2020, GP-14, section 63.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Vasilieva or E. A. Nikitina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest. Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Mutant lines of drosophila with a short life cycle and cheap maintenance were used as simple animal models in the experiments.

Additional information

Abbreviations: DS breaks—double-strand breads, CI—courtship index, LI—learning index, MF—magnetic field, WSMF—weak static magnetic field, WBS—Williams–Beuren syndrome, HDAC—histone deacetylase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilieva, S.A., Tokmacheva, E.V., Medvedeva, A.V. et al. The Role of Parental Origin of Chromosomes in the Instability of the Somatic Genome in Drosophila Brain Cells and Memory Trace Formation in Norm and Stress. Cell Tiss. Biol. 14, 178–189 (2020). https://doi.org/10.1134/S1990519X20030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20030074

Keywords:

Navigation