Skip to main content
Log in

Electronic Properties of Silicene Films Subjected to Neutron Transmutation Doping

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The radiation doping of single-crystal silicon with phosphorus retains the structure of the sample, reduces internal stresses, and increases the lifetime of minority charge carriers. The study is concerned with the effect of phosphorus additives on the electronic properties of silicene. The electron density-of-states spectra of a phosphorus-doped single layer and 2 × 2 bilayer silicene on a graphite substrate are calculated by the quantum-mechanical method. The carbon substrate imparts semiconductor properties to silicene due to pp hybridization. Doping with phosphorus can retain or modify the metal properties gained by silicene. The position of phosphorus dopant atoms in silicene influences the semiconductor–conductor transition. The theoretical specific capacity of a phosphorus-doped silicene electrode decreases, and the electrode becomes less efficient for application in lithium-ion batteries. However, the increase in the conductivity is favorable for use of this material in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. G. Aberle, Thin Solid Films 517, 4706 (2009).

    Article  ADS  Google Scholar 

  2. A. V. Isakov, A. P. Apisarov, A. O. Khudorozhkova, M. V. Laptev, and Yu. P. Zaikov, J. Phys.: Conf. Ser. 1134, 012021 (2018).

    Google Scholar 

  3. S. I. Zhuk, L. M. Minchenko, O. V. Chemezov, V. B. Malkov, O. V. Grishenkova, V. A. Isaev, Yu. P. Zaikov, and Sh. Qi, Adv. Mater. Res. 1088, 429 (2015).

    Article  Google Scholar 

  4. M. N. Andreev, A. K. Rebrov, A. I. Safonov, N. I. Timoshenko, K. V. Kubrak, and V. S. Sulyaeva, J. Eng. Phys. Thermophys. 88, 1003 (2015).

    Article  Google Scholar 

  5. M. Moreno and P. Roca i Cabarrocas, EPJ Photovolt. 1, 10301 (2010).

  6. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Phys. Rev. Lett. 108, 155501 (2012).

    Article  ADS  Google Scholar 

  7. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, and A. Molle, Adv. Mater. 24, 5088 (2012).

    Article  Google Scholar 

  8. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Takamura, Phys. Rev. Lett. 108, 245501 (2012).

    Article  ADS  Google Scholar 

  9. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and M. J. Gao, Nano Lett. 13, 685 (2013).

    Article  ADS  Google Scholar 

  10. Y. Ding and Y. Wang, Nanoscale Res. Lett. 10, 13 (2015).

    Article  ADS  Google Scholar 

  11. A. Kara, H. Enriquez, A. P. Seitsonen, L. C. L. Y. Voon, S. Vizzini, B. Aufray, and H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012).

    Article  ADS  Google Scholar 

  12. H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai, and H. Okamoto, J. Mater. Chem. A 2, 7588 (2014).

    Article  Google Scholar 

  13. M. de Crescenzi, I. Berbezier, M. Scarselli, P. Castrucci, M. Abbarchi, A. Ronda, F. Jardali, J. Park, and H. Vach, ACS Nano 10, 11163 (2016).

    Article  Google Scholar 

  14. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Progr. Mater. Sci. 83, 24 (2016).

    Article  Google Scholar 

  15. A. E. Galashev, O. R. Rakhmanova, K. A. Ivanichkina, and A. S. Vorob’ev, Phys. Solid State 59, 1242 (2017).

    Article  ADS  Google Scholar 

  16. A. E. Galashev, O. R. Rakhmanova, and K. A. Ivanichkina, J. Struct. Chem. 59, 877 (2018).

    Article  Google Scholar 

  17. H. Q. Ho, Y. Honda, M. Motoyama, S. Hamamoto, T. Ishii, and E. Ishitsuka, Appl. Radiat Isot. 135, 12 (2018).

    Article  Google Scholar 

  18. M. L. Kozhukh, Nucl. Instrum. Methods Phys. Res., Sect. A 329, 453 (1993).

    Google Scholar 

  19. I. S. Shlimak, Phys. Solid State 41, 716 (1999).

    Article  ADS  Google Scholar 

  20. J. M Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  21. W. Hu, Z. Li, and J. Yang, J. Chem. Phys. 139, 154704 (2013).

    Article  ADS  Google Scholar 

  22. S. K. Gupta, H. R. Soni, and P. K. Jha, AIP Adv. 3, 032117 (2013).

    Article  ADS  Google Scholar 

  23. N. Pantha, A. Khaniya, and N. P. Adhikari, Int. J. Mod. Phys. B 29, 1550143 (2015).

    Article  ADS  Google Scholar 

  24. S. Xu, X. Fan, J. Liu, D. J. Singh, Q. Jiang, and W. Zheng, Phys. Chem. Chem. Phys. 20, 8887 (2018).

    Article  Google Scholar 

  25. T. Hussain, S. Chakraborty, and R. Ahuja, Chem. Phys. Chem. 14, 3463 (2013).

    Article  Google Scholar 

  26. M. A. Bin Hamid, C. K. Tim, Y. Bin Yaakob, and M. A. Bin Hazan, Mater. Res. Express 6 (5) (2019).

  27. R. Zhou, L. C. L. Y. Voon, and Y. Zhuang, J. Appl. Phys. 114, 093711 (2013).

    Article  ADS  Google Scholar 

  28. J. E. Padilha and R. B. Pontes, J. Phys. Chem. C 119, 3818 (2015).

    Article  Google Scholar 

  29. J. Sivek, H. Sahin, B. Partoens, and F. M. Peeters, Phys. Rev. B 87, 085444 (2013).

    Article  ADS  Google Scholar 

  30. T. L. Brown, H. E. LeMay, and B. E. Bursten, J. Chem. Educat. 74 (4) (1997).

  31. M. S. Silberberg, Chemistry: The Molecular Nature of Matter and Change, 5th ed. (McGraw-Hill, New York, 2009).

    Google Scholar 

  32. A. Y. Galashev and Yu. P. Zaikov, J. Appl. Electrochem. 49, 1027 (2019).

    Article  Google Scholar 

  33. W. Liu, H. Zhi, and X. Yu, Energy Storage Mater. 16, 290 (2019).

    Article  Google Scholar 

  34. A. E. Galashev, Yu. P. Zaikov, and R. G. Vladykin, Russ. J. Electrochem. 52, 966 (2016).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 16-13-00061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Vorob’ev, A.S. Electronic Properties of Silicene Films Subjected to Neutron Transmutation Doping. Semiconductors 54, 641–649 (2020). https://doi.org/10.1134/S1063782620060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620060068

Keywords:

Navigation