Skip to main content
Log in

Correcting the Characteristics of Silicon Photodiodes by Ion Implantation

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The measured electrical parameters of silicon pin photodiodes subjected to the implantation of defect-forming ions and subsequent heat treatment are analyzed, which reveal a new way of reducing the dark current and enhancing the device yield. The data of the electrical measurements are compared with the results of the structural study. The experimental efficiency of proton irradiation of the n+p junction periphery for protecting the surface of high-resistance silicon-based pin photodiodes is experimentally established. The optimal proton irradiation and subsequent annealing regimes (an energy of E = 100 + 200 + 300 keV, a dose of D = 2 × 1016 cm–2, a temperature of T = 300°C, and a time of t = 2 h) are determined, which ensure the formation of a surface layer with characteristics optimal for obtaining the minimum dark currents of photosensitive areas and a guard ring. The use of these regimes in commercial pin photodiodes with an n+p junction depth of ~3 μm has allowed a reduction in the dark current by an order of magnitude and an increase in the device yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. P. Bezrodnykh, A. P. Tyutnev, and V. T. Semenov, Radiation Effects in Space. The Effect of Ionizing Radiation on Electronic Products (VNIIEM, Moscow, 2017), Part 3 [in Russian].

  2. M. Bruel, Electron. Lett. 31, 1201 (1995).

    Article  ADS  Google Scholar 

  3. V. V. Kozlovskii, Modification of Semiconductors by Proton Beams (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  4. V. Gubarev, A. Semenov, A. Surma, and V. Stolbunov, Silov. Elektron., No. 5, 108 (2011).

  5. S. Kirnstötter, M. Faccinelli, M. Jelinek, W. Schustereder, J. G. Laven, H. J. Schulze, and P. Hadley, Solid State Phenom. 205–206, 311 (2014).

  6. I. G. D’yachkova, E. G. Novoselova, and I. S. Smirnov, in Proceedings of the 25th International Conference on Radiation Physics of Solid State (Sevastopol’, 2015), p. 539.

  7. H. Schmalzwasser and A. Richter, Wissensch. Zeitschr. Friedrich-Schiller-Univ. (Jena) 35, 505 (1986).

    Google Scholar 

  8. P. Wendland, Opt. Spectra 7 (10), 33 (1973).

    Google Scholar 

  9. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  10. Semiconductor Surface Physics, Collection of Articles (Inostr. Liter., Moscow, 1959) [in Russian].

  11. P. Wendland, Electro-Opt. Syst. Des. 8, 48 (1970).

    Google Scholar 

  12. B. M. Vul, Physics of Dielectrics and Semiconductors (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  13. P. A. Aleksandrov, E. K. Baranova, I. V. Baranova, V. V. Budaragin, and V. L. Litvinov, in Proceedings of the 12th International Conference on Radiation Physics of Solid State (Sevastopol’, 2002), p. 149.

  14. A. F. Burenkov, Tables of Spatial Distribution Parameters of Ion-Implanted Impurities (BGU, Minsk, 1980) [in Russian].

    Google Scholar 

  15. V. E. Asadchikov, I. G. D’yachkova, D. A. Zolotov, F. N. Chukhovskii, and L. M. Sorokin, Phys. Solid State 61, 1383 (2019).

    Article  ADS  Google Scholar 

  16. V. E. Asadchikov, I. G. D’yachkova, D. A. Zolotov, F. N. Chukhovskii, and L. M. Sorokin, Phys. Solid State 61, 1707 (2019).

    Article  ADS  Google Scholar 

  17. V. E. Asadchikov, I. G. D’yachkova, D. A. Zolotov, Yu. S. Krivonosov, V. T. Bublik, and A. I. Shikhov, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekhn. 22 (1), 11 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Sc. (Phys.-Math.) L.M. Sorokin, Ioffe Physical–Technical Institute, for assistance in electron-microscopy investigations and Cand. Tech. Sc. K.V. Sorokin, Moscow State University of Fine Chemical Technologies, for help in obtaining the electrical characteristics of the investigated samples.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Dyachkova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadchikov, V.E., Dyachkova, I.G., Zolotov, D.A. et al. Correcting the Characteristics of Silicon Photodiodes by Ion Implantation. Semiconductors 54, 666–671 (2020). https://doi.org/10.1134/S1063782620060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620060032

Keywords:

Navigation