Skip to main content
Log in

Modification of the n-Surface Profile of AlGaInN LEDs by Changing the Gas-Mixture Composition During Reactive Ion Etching

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The kind of profile produced during the reactive ion etching of AlGaInN light-emitting-diode (LED) heterostructures on the surface that became free after removal of the growth substrate is studied in relation to the composition of the gas mixture used in the etching process. It is shown that using a mixture composed of Cl2 and Ar, taken in a 3:2 ratio in terms of flow rates, leads to the thinnest profile, whereas a 2 : 1 gas mixture of BCl3 and Ar provides the largest structural elements. To study the effect of the kind of profile on the quantum efficiency (QE), flip-chip LEDs are fabricated on a silicon substrate. The LEDs are etched in different modes after the growth substrate is removed. Etching in the Cl2:BCl3:Ar mixture with a flow ratio of 6:10:11, which leads to intermediate sizes of the etching profile elements, is optimal for obtaining maximum light extraction from a LED chip at a wavelength of 460 nm. The variation of the kind of profile with the gas-mixture composition suggests that the profile parameters can be tuned to the wavelength used. An analysis of how the QE of LED chips depends on the etching duration in the three-component mixture under consideration results in that the optimum etching duration is estimated to be ~30 min. The results of the study can also be of use in the search for conditions minimizing the reflection of incident light by a chip, e.g., for photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, IEEE Photon. Technol. Lett. 18, 1152 (2006).

    Article  ADS  Google Scholar 

  2. S.-M. Jeong, S. Kissinger, D.-W. Kim, S. Jae Lee, J.-S. Kim, H.-K. Ahn, and C.-R. Lee, J. Cryst. Growth 312, 258 (2010).

    Article  ADS  Google Scholar 

  3. J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han, Y. J. Park, P. Uthirakumar, and C.-H. Hong, Opt. Express 19, 3637 (2011).

    Article  ADS  Google Scholar 

  4. R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, Appl. Phys. Lett. 86, 221101 (2005).

    Article  ADS  Google Scholar 

  5. H. Huang, J. Hu, and H. Wang, J. Semicond. 35, 084006 (2014).

  6. M. J. Park, C. U. Kim, S. B. Kang, S. H. Won, J. S. Kwak, C.-M. Kim, and K. J. Choi, Adv. Opt. Mater. 5, 1600684 (2017).

    Article  Google Scholar 

  7. L. K. Markov, A. S. Pavlyuchenko, and I. P. Smirnova, Semiconductors 53, 172 (2019).

    Article  ADS  Google Scholar 

  8. D. Ge, X. Huang, J. Wei, P. Qian, L. Zhang, J. Ding, and S. Zhu, Mater. Res. Express 6 (2019).

  9. H. H. Yen, H. C. Kuo, and W. Y. Yeh, Phys. Status Solidi C 5, 2152 (2008).

    Article  ADS  Google Scholar 

  10. Y. J. Sung, M.-S. Kim, H. Kim, S. Choi, Y. H. Kim, M.-H. Jung, R.-J. Choi, Y.-T. Moon, J.-T. Oh, and H.-H. Jeong, Opt. Express 27, 29930 (2019).

    Article  ADS  Google Scholar 

  11. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Den Baars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).

    Article  ADS  Google Scholar 

  12. D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, Appl. Phys. Lett. 86, 052108 (2005).

    Article  ADS  Google Scholar 

  13. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J.  J.  O’Shea,  M. J.  Ludowise,  G.  Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).

    Article  ADS  Google Scholar 

  14. S. Zhou, X. Liu, H. Yan, Z. Chen, Y. Liu, and S. Liu, Opt. Express 27, A669 (2019).

    Article  ADS  Google Scholar 

  15. L. K. Markov, I. P. Smirnova, A. S. Pavlyuchenko, M. V. Kukushkin, E. D. Vasil’eva, A. E. Chernyakov, and A. S. Usikov, Semiconductors 47, 409 (2013).

    Article  ADS  Google Scholar 

  16. I. P. Smirnova, L. K. Markov, D. A. Zakheim, E. M. Arakcheeva, and M. R. Rymalis, Semiconductors 40, 1363 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Markov.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, L.K., Smirnova, I.P., Kukushkin, M.V. et al. Modification of the n-Surface Profile of AlGaInN LEDs by Changing the Gas-Mixture Composition During Reactive Ion Etching. Semiconductors 54, 672–676 (2020). https://doi.org/10.1134/S1063782620060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620060111

Keywords:

Navigation