Skip to main content
Log in

Biodegradation of Propylene Glycol Wastewater Using Bacterial Consortia Isolated from Municipal Wastewater Treatment Sludge–Process Kinetics and Optimization

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Propylene glycol (PG), commonly used in the food, cosmetics and pharmaceutical industries and considered non-PBT, is still an emerging contaminant of concern due to its widespread use. In this study, an isolate of a bacterial consortium obtained from an effluent treatment plant, MC1S, was used to degrade PG. The growth kinetics of the isolate was studied under aerated and non-aerated conditions. The isolate was able to effectively grow in saline water under aerated conditions using PG as the substrate. Using response surface methodology (RSM), the effect of pH, salinity, PG concentration, phosphate and nitrate concentration on cell growth and PG degradation was investigated. The isolated bacterium, MC1S, was capable of degrading PG with a maximum of 79% COD reduction observed and was able to withstand comparatively high salinity of the medium. Solution pH and salinity were the most important parameters affecting degradation. Salinity less than 0.1 M and pH close to 8 appeared to be the optimum conditions for PG degradation. HPLC analysis of the treated sample appeared to show the presence of three daughter products. Using RSM, a quadratic equation model between COD reduction and the process variables was developed. The results indicated that aerobic treatment of PG under specific conditions was the best approach for the specific isolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi, M., Jorfi, S., Kujlu, R., Ghafari, S., Darvishi Cheshmeh Soltani, R., & Jaafarzadeh Haghighifard, N. (2017). A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. Journal of Environmental Management, 191, 198–208.

    Article  CAS  Google Scholar 

  • Badmus, K. O., Tijani, J. O., Massima, E., & Petrik, L. (2018). Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environmental Science and Pollution Research, 25(8), 7299–7314.

    Article  CAS  Google Scholar 

  • Baldwin, B. R., Taggart, D., Chai, Y., Wandor, D., Biernacki, A., Sublette, K. L., et al. (2017). Bioremediation management reduces mass discharge at a chlorinated DNAPL site. Groundwater Monitoring and Remediation, 37(2), 58–70.

    Article  CAS  Google Scholar 

  • Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environment International, 124, 336–353. https://doi.org/10.1016/j.envint.2019.01.011.

  • Biró, B., Toscano, G., Horváth, N., Matics, H., Domonkos, M., Scotti, R., et al. (2014). Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils. Environmental Science and Pollution Research, 21(15), 9095–9108.

    Article  Google Scholar 

  • Blum, K. M., Andersson, P. L., Ahrens, L., Wiberg, K., & Haglund, P. (2018). Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. Science of the Total Environment, 612, 1532–1542.

    Article  CAS  Google Scholar 

  • Bramhachari, P. V., Reddy, D. R. S., & Kotresha, D. (2016). Biodegradation of catechol by free and immobilized cells of Achromobacter xylosoxidans strain 15DKVB isolated from paper and pulp industrial effluents. Biocatalysis and Agricultural Biotechnology, 7, 36–44.

    Article  Google Scholar 

  • Chen, Y., Lan, S., Wang, L., Dong, S., Zhou, H., Tan, Z., & Li, X. (2017). A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere, 174, 173–182.

    Article  CAS  Google Scholar 

  • Chou, M. S., Huang, B. J., & Chang, H. Y. (2006). Degradation of gas-phase propylene glycol monomethyl ether acetate by ultraviolet/ozone process: a kinetic study. Journal of the Air and Waste Management Association, 56(6), 767–776.

    Article  CAS  Google Scholar 

  • De Luna, M. D. G., Retumban, J. D., Garcia-Segura, S., & Lu, M. C. (2017). Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional Fenton process. Journal of Advanced Oxidation Technologies, 20(2), 1–10. https://doi.org/10.1515/jaots-2017-0012.

  • Fogel, S., Findlay, M., Smoler, D., Manale, F., Jin, P., & Copland, R. (2005). Bioremediation of carbon tetrachloride and PCE: field results. Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium, 4, 1924. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745854274&partnerID=40&md5=9b8a8f3654fa1ed4701f8983628c43c8.

  • Holčapek, M., Virelizier, H., Chamot-Rooke, J., Jandera, P., & Moulin, C. (1999). Trace determination of glycols by {HPLC} with {UV} and electrospray ionization mass spectrometric detections. Analytical Chemistry, 71(13), 2288–2293.

    Article  Google Scholar 

  • Hyman, M. (2013). Biodegradation of gasoline ether oxygenates. Current Opinion in Biotechnology, 24(3), 443–450.

    Article  CAS  Google Scholar 

  • Jaesche, P., Totsche, K. U., & Kögel-Knabner, I. (2006). Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials. Journal of Contaminant Hydrology, 85, 271–286.

    Article  CAS  Google Scholar 

  • Jia, Y., Molstad, L., Frostegård, Å., Aagaard, P., Breedveld, G. D., & Bakken, L. R. (2007). Kinetics of microbial growth and degradation of organic substrates in subsoil as affected by an inhibitor, benzotriazole: model based analyses of experimental results. Soil Biology and Biochemistry, 39(7), 1597–1608.

    Article  CAS  Google Scholar 

  • Kaplan, D. L., Walsh, J. T., & Kaplan, A. M. (1982). Gas chromatographic analysis of glycols to determine biodegradability. Environmental Science and Technology, 16, 723–725.

    Article  CAS  Google Scholar 

  • Kim, M. K., & Zoh, K. D. (2016). Occurrence and removals of micropollutants in water environment. Environmental Engineering Research, 21(4), 319–332.

    Article  Google Scholar 

  • Kishi, M., Kawai, M., & Toda, T. (2015). Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Research, 11, 428–434.

    Article  Google Scholar 

  • Kover, S. C., Rosario-Ortiz, F. L., & Linden, K. G. (2014). Photochemical fate of solvent constituents of Corexit oil dispersants. Water Research, 52, 101–111.

    Article  CAS  Google Scholar 

  • Lerma, E., & Nissenson, A. (2012). Nephrology Secrets. Nephrology secrets.

  • Li, C., Li, X., Qin, L., Wu, W., Meng, Q., Shen, C., & Zhang, G. (2019). Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis. Science of the Total Environment, 696, 133953.

    Article  CAS  Google Scholar 

  • Miller, O. N., & Bazzano, G. (1965). Propanediol metabolism and its relation to lactic acid metabolism. Annals of the New York Academy of Sciences, 119(3), 957–973.

    Article  CAS  Google Scholar 

  • Nitschke, L., Wagner, H., Metzner, G., Wilk, A., & Huber, L. (1996). Biological treatment of waste water containing glycols from de-icing agents. Water Research, 30(3), 644–648.

    Article  CAS  Google Scholar 

  • Podnecky, N. L., Elrod, M. G., Newton, B. R., Dauphin, L. A., Shi, J., Chawalchitiporn, S., et al. (2013). Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR. PLoS One, 8(2), e58032.

    Article  CAS  Google Scholar 

  • Ruddick, A., Directorate, D., Pasture, T., & Ol, O. K. I. A. (1972). Toxicology, metabolism, and biochemistry I, ZPropanediol 1, 2-propanediol is reviewed, and a table of the LD50 values for the rat, rabbit, mouse, guinea pig, and dog is presented. Metabolic and chronic studies demonstrate that 1, Zpropanediol c, (Mld), 102–111.

  • Schotanus, D., Meeussen, J. C. L., Lissner, H., van der Ploeg, M. J., Wehrer, M., Totsche, K. U., & van der Zee, S. E. A. T. M. (2014). Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis. Environmental Science and Pollution Research, 21(15), 9054–9066.

    CAS  Google Scholar 

  • Segev, O., Meusel, W., Friedenberger, M., Brenner, A., & Kushmaro, A. (2009). Aerobic biodegradation of the brominated flame retardants, dibromoneopentyl glycol and tribromoneopentyl alcohol. Biodegradation, 20(5), 621–627.

    Article  CAS  Google Scholar 

  • Shieh, W. K., Lepore, J. A., & Zandi, I. (1998). Biological fluidized bed treatment of ethylene and propylene glycols. Water Science and Technology, 38(4-5–5 pt 4), 145–153.

    Article  CAS  Google Scholar 

  • Su, T. T., Lin, C. W., Yet-Po, I., & Wu, C. H. (2012). Biodegradation of semiconductor volatile organic compounds by four novel bacterial strains: a kinetic analysis. Bioprocess and Biosystems Engineering, 35(7), 1117–1124.

    Article  CAS  Google Scholar 

  • Tomei, M. C., Mosca Angelucci, D., Stazi, V., & Daugulis, A. J. (2017). On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater. Science of the Total Environment, 599–600, 1056–1063.

    Article  Google Scholar 

  • Toscano, G., Cavalca, L., Letizia Colarieti, M., Scelza, R., Scotti, R., Rao, M. A., et al. (2013). Aerobic biodegradation of propylene glycol by soil bacteria. Biodegradation, 24(5), 603–613.

    Article  CAS  Google Scholar 

  • Toscano, G., Colarieti, M. L., Anton, A., Greco, G., & Biró, B. (2014). Natural and enhanced biodegradation of propylene glycol in airport soil. Environmental Science and Pollution Research, 21(15), 9028–9035.

    Article  CAS  Google Scholar 

  • Wang, C., Lippincott, L., & Meng, X. (2008). Kinetics of biological perchlorate reduction and pH effect. Journal of Hazardous Materials, 153, 663–669.

    Article  CAS  Google Scholar 

  • Wang, H. Y., Hu, Y. N., Cao, G. P., & Yuan, W. K. (2011). Degradation of propylene glycol wastewater by Fenton’s reagent in a semi-continuous reactor. Chemical Engineering Journal, 170(1), 75–81.

    Article  CAS  Google Scholar 

  • West, R. J., Davis, J. W., Pottenger, L. H., Banton, M. I., & Graham, C. (2007). Biodegradability relationships among propylene glycol substances in the organization for economic cooperation and development ready- and seawater biodegradability tests. Environmental Toxicology and Chemistry, 26, 862–871.

    Article  CAS  Google Scholar 

  • West, R., Banton, M., Hu, J., & Klapacz, J. (2014). The distribution, fate, and effects of propylene glycol substances in the environment. Reviews of Environmental Contamination and Toxicology, 232, 107–138.

    CAS  Google Scholar 

  • Wu, J. J., Muruganandham, M., Chang, L. T., & Chen, S. H. (2008). Oxidation of propylene glycol methyl ether acetate using ozone-based advanced oxidation processes. Ozone: Science and Engineering, 30(5), 332–338.

    Article  CAS  Google Scholar 

  • Zgoła-Grześkowiak, A., Grześkowiak, T., Zembrzuska, J., & Łukaszewski, Z. (2006). Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s. Chemosphere, 64(5), 803–809.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help and support of SASTRA Deemed University towards the completion of the work.

Funding

No external funding was obtained for this work. Support for chemicals and laboratory facilities were provided by SASTRA Deemed University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautham B. Jegadeesan.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udaykumar, R., Srinivas, N.S. & Jegadeesan, G.B. Biodegradation of Propylene Glycol Wastewater Using Bacterial Consortia Isolated from Municipal Wastewater Treatment Sludge–Process Kinetics and Optimization. Water Air Soil Pollut 231, 286 (2020). https://doi.org/10.1007/s11270-020-04657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04657-0

Keywords

Navigation