Skip to main content
Log in

Preparation of Antimony-doped Stannate Chemical Conversion Coating on AZ31B Mg Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Due to the complexity and high cost, the common doping method is not suitable for the direct element doping on the surface of the Mg alloy. In this paper, antimony-doped potassium stannate powder was prepared by ATO and potassium hydroxide calcination for the first time; then, the antimony-doped stannate coating was prepared on the surface of AZ31B Mg alloy through chemical conversion. The coating was continuously dense and the corrosion potential of the coating was increased by about 214 mV. The corrosion current density was greatly decreased, and the contact resistance was as low as 54.8 Ω/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray J E, and Luan B, J Alloys Compd336 (2002) 88.

    Article  CAS  Google Scholar 

  2. Zhong C, Liu F, Wu Y T, and Le J J, J Alloys Compd520 (2012) 11.

    Article  CAS  Google Scholar 

  3. Duan G Q, Yang L X, Liao S J, and Zhang C Y, Corros Sci135 (2018) 197.

    Article  CAS  Google Scholar 

  4. Ishizaki T, Masuda Y, and Teshima K, Surf Coat Technol217 (2013) 76.

    Article  CAS  Google Scholar 

  5. Mahidashti Z, Shahrabi T, and Ramezanzadeh B, Appl Surf Sci390 (2016) 623.

    Article  CAS  Google Scholar 

  6. Rajabalizadeh Z, and Seifzadeh D, Surf Coat Technol304 (2016) 450.

    Article  CAS  Google Scholar 

  7. Wang C, Zhu S L, Jiang F, and Wang F H, Corros Sci51 (2009) 2916.

    Article  CAS  Google Scholar 

  8. Yang K H, Ger M D, Hwu W H, and Sung Y, Mater Chem Phys101 (2007) 480.

    Article  CAS  Google Scholar 

  9. Guo X W, Wang S H, Gong J, and Guo J H, Appl Surf Sci313 (2014) 711.

    Article  CAS  Google Scholar 

  10. Yang H Y, Guo X W, Chen X B, and Birbilis N, Corros Sci79 (2014) 41.

    Article  Google Scholar 

  11. Ambat R, Zhou W (2004) Surf Coat Technol179: 124.

    Article  CAS  Google Scholar 

  12. Huo H W, Ying L, and Wang F H, Corros Sci46 (2004) 1467.

    Article  CAS  Google Scholar 

  13. Liu J J, Wang X D, Tian Z Y, and Yuan M, Appl Surf Sci356 (2015) 289.

    Article  CAS  Google Scholar 

  14. Shao Z C, Surf Technol47 (2018) 120.

    Google Scholar 

  15. Shi H W, Liu F C, and Han E H, Prog Org Coat66 (2009) 183.

    Article  CAS  Google Scholar 

  16. Bestetti M, Cavallotti P L, Forno A D, and Pozzi S, Trans Imf85 (2013) 316.

    Article  Google Scholar 

  17. Gou Y N, Zhang D F, Yi D, and Zhang C Y, Rare Metal Mater Eng46 (2017) 1103.

    Google Scholar 

  18. Zhang W, Appl Mech Mater341-342 (2013) 187.

    Google Scholar 

  19. Chen F, Zhou H, Yao B, and Qin Z, Surf Coat Technol201 (2007) 4905.

    Article  CAS  Google Scholar 

  20. Dong Q, Chen C Z, Wang D G, and Ji Q M, Surf Eng22 (2006) 177.

    Article  CAS  Google Scholar 

  21. Ma J, Yang Y S, Wang X C, and Zhang J, Key Eng Mater575-576 (2014) 418.

    Article  Google Scholar 

  22. Tian X B, Wei C B, Yang S Q, and Fu R K Y, Surf Coat Technol198 (2005) 454.

    Article  CAS  Google Scholar 

  23. Ikhe A B, Kale A B, Jeong J, and Reece M J, Corros Sci109 (2016) 238.

    Article  CAS  Google Scholar 

  24. Kartsonakis I A, Balaskas A C, and Kordas G C, Int J Struct Integr4 (2013) 127.

    Article  Google Scholar 

  25. Lan W, Sun J C, Zhou A R, and Zhang D F, Mater Sci Forum610-613 (2009) 880.

    Article  Google Scholar 

  26. Zhang S Y, Li Q, Yang X K, and Zhang H X, Mater Corros62 (2011) 841.

    Article  CAS  Google Scholar 

  27. Liao Y, Zhang S T, and Dryfe R, Materialwiss Werkstofftech42 (2011) 833.

    Article  CAS  Google Scholar 

  28. Liu W, Xu D D, Duan X Y, and Zhao G S, Trans Nonferrous Metals Soc China25 (2015) 1506.

    Article  CAS  Google Scholar 

  29. Riza M A, Ibrahim M A, Ahamefula U C, and Mat Teridi M A, Solar Energy137 (2016) 371.

    Article  CAS  Google Scholar 

  30. Wang B H, Zhang W, Yang K B, and Liao T, Ceram Int44 (2018) 16051.

    Article  CAS  Google Scholar 

  31. Mahesh R, Mahendiran R, Raychaudhuri A K, and Rao C N R, J Solid State Chem120 (1995) 204.

    Article  CAS  Google Scholar 

  32. Upadhyay S, Parkash O, and Kumar D, J Alloys Compd432 (2007) 258.

    Article  CAS  Google Scholar 

  33. Guo X Y, Liu J X, Qin H, and Liu Y, Hydrometallurgy156 (2015) 199.

    Article  CAS  Google Scholar 

  34. Zhang S G, Wei Y D, Yin S F, and Luo S L, Appl Catal A: Gen 406 (2011) 113.

    Article  CAS  Google Scholar 

  35. Song G, Atrens A, John D S, and Wu X, Corros Sci 39 (1997) 1981.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0301105 and 2017YFB0702100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, X., Wan, L. et al. Preparation of Antimony-doped Stannate Chemical Conversion Coating on AZ31B Mg Alloy. Trans Indian Inst Met 73, 1891–1898 (2020). https://doi.org/10.1007/s12666-020-01996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01996-8

Keywords

Navigation