Skip to main content
Log in

How We Came to Understand the “Tumultuous Chemical Heterogeneity” of the Lipid Bilayer Membrane

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The path to our modern understanding of the structure of the lipid bilayer membrane is a long one that can be traced from today perhaps as far back as Benjamin Franklin in the eighteenth century. Here, I provide a personal account of one of the important steps in that path, the description of the “Complete Structure” of a hydrated, fluid phase dioleoyl phosphatidylcholine bilayer by the joint refinement of neutron and X-ray diffraction data by Stephen White and his colleagues.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Benz RW, Castro-Roman F, Tobias DJ, White SH (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:805–817

    Article  CAS  PubMed  Google Scholar 

  • Brownrigg W, Farish M (1774) Of the stilling of waves by means of oil. Extracted from Sundry letters between Benjamin Franklin, LL. D. F. R. S., William Brownrigg, M. D. F. R. S. and the Reverend Mr. Farish. Philos Trans 64:445–460

  • Büldt G, Gally HU, Seelig A, Seelig J, Zaccai G (1978) Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature (London) 271:182–184

    Article  Google Scholar 

  • Fettiplace R, Andrews DM, Haydon DA (1971) The thickness, composition and structure of some lipid bilayers and natural membranes. J Membr Biol 5:277–296

    Article  CAS  PubMed  Google Scholar 

  • Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anesthetics: an X-ray and neutron diffraction study. J Mol Biol 133:469–500

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, White SH, Von HG (2005) Membrane insertion of a potassium-channel voltage sensor. Science 307:1427

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock PB, Mason R, Thomas KM, Shipley GG (1974) Structural chemistry of 1,2 dilauroyl-dl-Phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids. Proc Natl Acad Sci USA 71:3036–3040

    Article  CAS  PubMed  Google Scholar 

  • Hristova K, White SH (1998) Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: Effect of hydration. Biophys J 74:2419–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hristova K, Wimley WC (2010) A look at arginine in membranes. J Membr Biol 239:49–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hristova K, Wimley WC, Mishra VK, Anantharamiah GM, Segrest JP, White SH (1999) An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol 290:99–117

    Article  CAS  PubMed  Google Scholar 

  • Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King GI, White SH (1986) Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J 49:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmuir I (1917) The constitution and fundamental properties of liquids and solids. II. Liquids. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  • Levine YK, Wilkins MHF (1971) Structure of oriented lipid bilayers. Nat New Biol 230:69–72

    Article  CAS  PubMed  Google Scholar 

  • Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova MD, Lyman E, Levental I (2020) Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 16:710

    Article  CAS  PubMed  Google Scholar 

  • Luzzati V (1968) Biological membranes. In: Chapman D (ed) Membrane. Academic Press, New York

    Google Scholar 

  • Luzzati V, Husson F (1962) The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maget-Dana R (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys Acta 1462:109–140

    Article  CAS  PubMed  Google Scholar 

  • Meyer H (1901) Zur theorie der alkolnarkose: Der einfluss wechselnder temperatur sur wirkungsstarke und theilungscoefficient dar narcotica. Naunyn Schiedebergs Arch Pharmacol 46:388–396

    Google Scholar 

  • Mihailescu M, Vaswani RG, Jardon-Valadez E, Castro-Roman F, Freites JA, Worcester DL, Chamberlin AR, Tobias DJ, White SH (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100:1455–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui T (1978) X-ray diffraction studies of membranes. Adv Biophys 10:97–135

    CAS  PubMed  Google Scholar 

  • Ojemalm K, Higuchi T, Jiang Y, Langel U, Nilsson I, White SH, Suga H, von Heijne G (2011) A polar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci USA 108:E359–364

    Article  CAS  PubMed  Google Scholar 

  • Overton E (1901) Studien uber die Narkose. Gustav Fischer, Jena

    Google Scholar 

  • Pockels A (1891) Surface tension. Nature 43:437–441

    Google Scholar 

  • Rayleigh L (1890) Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc R Soc Lond 47:364–367

    Article  Google Scholar 

  • Schow EV, Freites JA, Cheng P, Bernsel A, Von HG, White SH, Tobias DJ (2010) Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 239:35–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Smith GS, Safinya CR, Roux D, Clark NA (1987) X-ray study of freely suspended films of a multilamellar lipid system. Mol Cryst Liq Cryst 144:235–255

    Article  CAS  Google Scholar 

  • Stoeckenius W (1962a) Some electron microscopical observations on liquid-crystalline phases in lipid-water systems. J Cell Biol 12:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckenius W (1962b) In: Harris RJC (ed) The interpretation of ultrastructure. Academic Press, New York

    Google Scholar 

  • Tanford C (1989) Ben Franklin stilled the waves. An informal history of pouring oil on water with reflections on the ups and downs of scientific life in general. Duke Univesity Press, Durham

    Google Scholar 

  • Wang DN, Stieglitz H, Marden J, Tamm LK (2013) Benjamin Franklin, Philadelphia's favorite son, was a membrane biophysicist. Biophys J 104:287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • Wiener MC, White SH (1991a) Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Biophys J 59:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener MC, White SH (1991b) Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction. II. "Composition-space" refinement method. Biophys. J 59:174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener MC, White SH (1991c) Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analog of dioleoylphosphatidylcholine. Biochemistry 30:6997–7008

    Article  CAS  PubMed  Google Scholar 

  • Wiener MC, White SH (1992a) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener MC, White SH (1992b) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys. J 61:428–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener MC, Suter RM, Nagle JF (1989) Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J 55:315–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener MC, King GI, White SH (1991) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distribution of double-bonds and water. Biophys J 60:568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins MHF, Blaurock AE, Engelman DM (1971) Bilayer structure in membranes. Nat New Biol 230:72–76

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, Creamer TP, White SH (1996) Solvation energies of amino acid sidechains and backbone in a family of host-guest pentapeptides. Biochemistry 35:5109–5124

    Article  CAS  PubMed  Google Scholar 

  • Worcester DL, Franks NP (1976) Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction. J Mol Biol 100:359–378

    Article  CAS  PubMed  Google Scholar 

  • Worthington CR (1969) The interpretation of low-angle X-ray data from planar and concentric multilayered structures. Biophys J 9:222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccai G, Büldt G, Seelig A, Seelig J (1979) Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol 134:693–706

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Wimley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimley, W.C. How We Came to Understand the “Tumultuous Chemical Heterogeneity” of the Lipid Bilayer Membrane. J Membrane Biol 253, 185–190 (2020). https://doi.org/10.1007/s00232-020-00126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00126-1

Keywords

Navigation