Skip to main content
Log in

Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quadratic convective flow of hybrid nanoliquid in an annulus subjected to quadratic thermal radiation is studied for the first time. The impact of suction/injection and the uniform movement of the rings are considered. Nonlinear equations are handled numerically by adopting the shooting technique. An optimization procedure is performed by using response surface methodology. The maximum heat transport is observed for chosen values of effective parameters (thermal radiation parameter \( (5 \le Rt \le 15) \), temperature ratio parameter \( (1.1 \le \theta_{w} \le 5.1) \) and nanoparticle volume fraction of copper \( (1\% \le \phi_{\text{Cu}} \le 3\% )) \) at three different levels (low(− 1), middle(0) and high(+ 1)). In addition, a slope of the data point is evaluated for the friction coefficient and the Nusselt number. The results showed that the impact of quadratic thermal radiation on velocity and temperature distributions is more significant than linear thermal radiation. Further, an increase in quadratic convection and quadratic thermal radiation leads to an improvement in the friction coefficient of the skin on the inner surface of the outer annulus. Furthermore, the sensitivity of the friction coefficient is positive for the appearance of quadratic thermal radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( A \) :

Coefficient of velocity for the inner annulus

\( B \) :

Coefficient of velocity for outer annulus

\( a \) :

The radius of the inner annulus \( \left( {\text{m}} \right) \)

\( b \) :

The radius of the outer annulus \( \left( {\text{m}} \right) \)

\( g \) :

Acceleration due to gravity \( \left( {{\text{m}}\,{\text{s}}^{ - 2} } \right) \)

\( p \) :

Pressure \( \left( {\text{Pa}} \right) \)

\( P \) :

Dimensionless pressure

\( \Pr \) :

Prandtl number

\( S \) :

Suction/injection parameter

\( \text{Re} \) :

Reynolds number

\( C_{p} \) :

Specific heat \( \left( {{\text{J}}\,{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right) \)

\( k \) :

Thermal conductivity \( \left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( n \) :

Shape factor

\( {\text{Nu}} \) :

Nusselt number

\( D_{\text{h}} \) :

Hydraulic diameter \( \left( {\text{m}} \right) \)

\( r \) :

Axis in cylindrical coordinates

\( T \) :

Temperature \( \left( {\text{K}} \right) \)

\( T_{0} \) :

Outer wall temperature \( \left( {\text{K}} \right) \)

\( T_{1} \) :

Inner wall temperature \( \left( {\text{K}} \right) \)

\( Rt \) :

Thermal radiation parameter

\( u_{z} \) :

Velocity along \( z \) direction \( \left( {{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( u_{r} \) :

Velocity in \( r \) direction \( \left( {{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( \theta_{w} \) :

Temperature ratio parameter

\( \alpha \) :

Quadratic convection parameter

\( \beta \) :

Thermal expansion coefficient \( \left( {{\text{K}}^{ - 1} } \right) \)

\( \eta \) :

Mixed convection parameter

\( \theta \) :

Dimensionless temperature

\( \lambda \) :

Radius ratio

\( \mu \) :

Dynamic viscosity \( \left( {{\text{kg}}\,{\text{m s}}^{ - 1} } \right) \)

\( \rho \) :

Density \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \nu \) :

Kinematic viscosity \( \left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) \)

\( \tau \) :

Skin friction coefficient

\( \phi \) :

The total volume concentration of \( {\text{Cu}} \) and \( {\text{Al}}_{2} {\text{O}}_{3} \)

\( 1,\lambda \) :

Value on the inner and outer wall

\( {\text{bl}} \) :

Bulk temperature

\( {\text{l}} \) :

Base liquid

\( {\text{hnl}} \) :

Hybrid nanoliquid

\( {\text{Cu}},{\text{Al}}_{2} {\text{O}}_{3} \) :

Nanoparticles

References

  1. S.U. Choi, J.A. Eastman Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29) (Argonne National Lab., IL, USA, 1995)

  2. R. Turcu, A.L. Darabont, A. Nan, N. Aldea, D. Macovei, D. Bica, L. Biro, New polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 8(2), 643–647 (2006)

    Google Scholar 

  3. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  4. S.S.U. Devi, S.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 94(5), 490–496 (2016)

    Article  ADS  Google Scholar 

  5. S. Das, R.N. Jana, O.D. Makinde, MHD flow of Cu–Al2O3/water hybrid nanofluid in porous channel: analysis of entropy generation. DDF 377, 42–61 (2017)

    Article  Google Scholar 

  6. T. Hayat, S. Nadeem, A.U. Khan, Rotating flow of Ag–CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. Plus E 41(6), 75 (2018)

    Article  Google Scholar 

  7. B. Mahanthesh, Statistical and exact analysis of MHD flow due to hybrid nanoparticles suspended in C2H6O2-H2O hybrid base fluid, in Mathematical Methods in Engineering and Applied Sciences (CRC Press, 2020), pp. 185–228

  8. S.L. Goren, On free convection in water at 4 C. Chem. Eng. Sci. 21(6–7), 515–518 (1966)

    Article  Google Scholar 

  9. K. Vajravelu, K.S. Sastri, Fully developed laminar free convection flow between two parallel vertical walls-I. Int. J. Heat Mass Transf. 20(6), 655–660 (1977)

    Article  ADS  Google Scholar 

  10. S. Shaw, P.K. Kameswaran, P. Sibanda, Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces. Bound. Value Probl. 2016, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  11. B.K. Jha, B.J. Gwandu, MHD free convection in a vertical slit micro-channel with super-hydrophobic slip and temperature jump: non-linear Boussinesq approximation approach. SN Appl. Sci. 1(6), 603 (2019)

    Article  Google Scholar 

  12. B. Vasu, R.S.R. Gorla, O.A. Bég, P.V.S.N. Murthy, V.R. Prasad, A. Kadir, Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation. J. Thermophys. Heat Transf. 33(2), 343–355 (2019)

    Article  Google Scholar 

  13. T. Kunnegowda, B. Mahanthesh, G. Lorenzini, I.L. Animasaun, Significance of induced magnetic field and exponential space dependent heat source on quadratic convective flow of Casson fluid in a micro-channel via HPM. Math. Model. Eng. Probl. 6(3), 369–384 (2019)

    Article  Google Scholar 

  14. P. Loganathan, M. Kannan, P. Ganesan, Thermal radiation effects on MHD flow over a moving semi-infinite vertical cylinder. Int. J. Math. Anal. 5(6), 257–274 (2011)

    MATH  Google Scholar 

  15. M. Khan, R. Malik, M. Hussain, Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder. AIP Adv. 6(5), 055315 (2016)

    Article  ADS  Google Scholar 

  16. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition. J. Nigerian Math. Soc. 35(1), 178–198 (2016)

    Article  MathSciNet  Google Scholar 

  17. G.M. Barros, G. Lorenzini, L.A. Isoldi, L.A.O. Rocha, E.D. Dos Santos, Influence of mixed convection laminar flows on the geometrical evaluation of a triangular arrangement of circular cylinders. Int. J. Heat Mass Transf. 114, 1188–1200 (2017)

    Article  Google Scholar 

  18. A. Shakiba, A.B. Rahimi, Nanofluid flow and MHD mixed convection inside a vertical annulus with moving walls and transpiration considering the effect of Brownian motion and shape factor. J. Therm. Anal. Calorim. 138(1), 501–515 (2019)

    Article  Google Scholar 

  19. B. Jha, M. Oni, Natural convection flow in a vertical annulus with time-periodic thermal boundary conditions. Propuls. Power Res. 8(1), 47–55 (2019)

    Article  Google Scholar 

  20. K. Thriveni, B. Mahanthesh, Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09596-w

    Article  Google Scholar 

  21. G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B (Methodol.) 13(1), 1–38 (1951)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Management of CHRIST (Deemed to be University), India, for their support in completing this work. The authors also thank the Editors and Reviewers for their constructive suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahanthesh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thriveni, K., Mahanthesh, B. Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation. Eur. Phys. J. Plus 135, 459 (2020). https://doi.org/10.1140/epjp/s13360-020-00484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00484-8

Navigation