Skip to main content
Log in

Proton–proton fusion in new pionless EFT power counting

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The zero-energy astrophysical S-factor for the fusion process \(p+p\rightarrow d+e^{+}+\nu _{e}\) is calculated using pionless effective field theory (\(~/\!\!\pi \)EFT). In the present study, the order-by-order results are reproduced according to a new suggested power counting. The short range interactions in the S-wave pp scattering at leading order and the corrections in the next-to-leading order including the Coulomb interaction are introduced. In addition the Coulomb interaction between the incoming protons has been considered. The new nuclear \(~/\!\!\pi \)EFT amplitude is compatible with renormalization-group invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: In the tables data is referenced.]

References

  1. X. Kong, F. Ravndal, Nucl. Phys. A 656, 421 (1999)

    ADS  Google Scholar 

  2. X. Kong, F. Ravndal, Phys. Lett. B 470, 1 (1999)

    ADS  Google Scholar 

  3. X. Kong, F. Ravndal, Phys. Rev. C 64, 044002 (2001)

    ADS  Google Scholar 

  4. C.-J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 044002 (2009)

    ADS  Google Scholar 

  5. B. Long, C.-J. Yang, Phys. Rev. C 86, 024001 (2012)

    ADS  Google Scholar 

  6. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    ADS  Google Scholar 

  7. T.D. Cohen, J.M. Hansen, Phys. Lett. B 440, 233 (1998)

    ADS  Google Scholar 

  8. J.V. Steele, R.J. Furnstahl, Nucl. Phys. A 645, 439 (1999)

    ADS  Google Scholar 

  9. T. Mehen, I.W. Stewart, Phys. Rev. C 59, 2365 (1999)

    ADS  Google Scholar 

  10. T. Frederico, V.S. Timóteo, L. Tomio, Nucl. Phys. A 653, 209 (1999)

    ADS  Google Scholar 

  11. J. Gegelia, Phys. Lett. B 463, 133 (1999)

    ADS  Google Scholar 

  12. D.B. Kaplan, J.V. Steele, Phys. Rev. C 60, 064002 (1999)

    ADS  Google Scholar 

  13. C.H. Hyun, D.-P. Min, T.-S. Park, Phys. Lett. B 473, 6 (2000)

    ADS  Google Scholar 

  14. M. Lutz, Nucl. Phys. A 677, 241 (2000)

    ADS  Google Scholar 

  15. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002)

    ADS  Google Scholar 

  16. J.M. Nieves, Phys. Lett. B 568, 109 (2003)

    ADS  Google Scholar 

  17. J.A. Oller, Nucl. Phys. A 725, 85 (2003)

    ADS  Google Scholar 

  18. M. Pavón Valderrama, and E. Ruiz Arriola, Phys. Lett. B 580 (2004) 149

  19. M. Pavón Valderrama, and E. Ruiz Arriola, Phys. Rev. C 70 (2004) 044006

  20. V.S. Timóteo, T. Frederico, A. Delno, L. Tomio, Phys. Lett. B 621, 109 (2005)

    ADS  Google Scholar 

  21. M. Pavón Valderrama, and E. Ruiz Arriola, Phys. Rev. C 74 (2006) 054001

  22. J.-F. Yang, J.-H. Huang, Commun. Theor. Phys. 47, 699 (2007)

    ADS  Google Scholar 

  23. D.R. Entem, E. Ruiz Arriola, M. Pavón Valderrama, and R. Machleidt, Phys. Rev. C 77 (2008) 044006

  24. J. Soto, J. Tarrús, Phys. Rev. C 78, 024003 (2008)

    ADS  Google Scholar 

  25. D. Shukla, D.R. Phillips, E. Mortenson, J. Phys. G 35, 115009 (2008)

    ADS  Google Scholar 

  26. C.-J. Yang, Ch. Elster, D.R. Phillips, Phys. Rev. C 77, 014002 (2008)

    ADS  Google Scholar 

  27. M.C. Birse, Eur. Phys. J. A 46, 231 (2010)

    ADS  Google Scholar 

  28. K. Harada, H. Kubo, Y. Yamamoto, Phys. Rev. C 83, 034002 (2011)

    ADS  Google Scholar 

  29. S.-I. Ando, C.H. Hyun, Phys. Rev. C 86, 024002 (2012)

    ADS  Google Scholar 

  30. S. Szpigel, V.S. Timóteo, J. Phys. G 39, 105102 (2012)

    ADS  Google Scholar 

  31. B. Long, Phys. Rev. C 88, 014002 (2013)

    ADS  Google Scholar 

  32. K. Harada, H. Kubo, T. Sakaeda, and Y. Yamamoto, arXiv:1311.3063 [nucl-th]

  33. E. Epelbaum, A.M. Gasparyan, J. Gegelia, H. Krebs, Eur. Phys. J. A 51, 71 (2015)

    ADS  Google Scholar 

  34. X.-L. Ren, K.-W. Li, L.-S. Geng, B.-W. Long, P. Ring, J. Meng, Chin. Phys. C 42, 014103 (2018)

    ADS  Google Scholar 

  35. U. van Kolck, Lect. Notes Phys. 513, 62 (1998)

    ADS  Google Scholar 

  36. U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    ADS  Google Scholar 

  37. M. Butler, J.-W. Chen, Phys. Lett. B 520, 87 (2001)

    ADS  Google Scholar 

  38. J.W. Chen, C.-P. Liu, S.H. Yu, Phys. Lett. B 720, 385 (2013)

    ADS  Google Scholar 

  39. B. Acharya, L. Platter, G. Rupak, Phys. Rev. C 100, 021001 (2019)

    ADS  Google Scholar 

  40. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    ADS  Google Scholar 

  41. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    ADS  Google Scholar 

  42. M. Rho, Phys. Rev. Lett. 66, 1275 (1991)

    ADS  Google Scholar 

  43. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    ADS  Google Scholar 

  44. H. Georgi, Phys. Lett. B 298, 187 (1993)

    ADS  Google Scholar 

  45. D.B. Kaplan, M.J. Savag, M.B. Wise, Nucl. Phys. B 478, 629 (1996)

    ADS  Google Scholar 

  46. L.E. Marcucci, R. Schiavilla, M. Viviani, Phys. Rev. Lett. 110, 192503 (2013)

    ADS  Google Scholar 

  47. C.-J. Yang, Eur. Phys. J. A 56, 96 (2020)

    ADS  Google Scholar 

  48. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    ADS  Google Scholar 

  49. M.P. Valderrama, Phys. Rev. C 83, 024003 (2011)

    ADS  Google Scholar 

  50. Bingwei Long and C. J. Yang, Phys. Rev. C 84 (2011) 057001

  51. M.C. Birse, Phys. Rev. C 74, 014003 (2006)

    ADS  Google Scholar 

  52. J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp, J.L. de Kok, T.A. Rijken, V.G.J. Stoks, J.J. de Swart, Phys. Rev. C 41, 1435 (1990)

    ADS  Google Scholar 

  53. V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Phys. Rev. C 48, 792 (1993)

    ADS  Google Scholar 

  54. NN-OnLine, http://www.nn-online.org/

  55. M. Sánchez Sánchez, C.-J. Yang, B. Long and U. van Kolck, Phys. Rev. C 97 (2018) 024001

  56. E.G. Adelberger, A.B. Balantekin, D. Bemmerer, C.A. Bertulani, J.-W. Chen, H. Costantini, M. Couder, R. Cyburt et al., Rev. Mod. Phys. 83, 195 (2011)

    ADS  Google Scholar 

  57. S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001)

    ADS  Google Scholar 

  58. S. i. Ando, and C. H. Hyun, Phys. Rev. C 72 (2005) 014008

  59. S. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, K. Kubodera, Phys. Lett. B 668, 187 (2008)

    ADS  Google Scholar 

  60. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994)

    ADS  Google Scholar 

  61. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    ADS  Google Scholar 

  62. I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Lett. B 653, 358 (2007)

    ADS  Google Scholar 

  63. J.R. Bergervoet, P.C. van Campen, W.A. van der Sanden, J.J. de Swart, Phys. Rev. C 38, 15 (1988)

    ADS  Google Scholar 

  64. E. Lomon, R. Wilson, Phys. Rev. C 9, 1329 (1974)

    ADS  Google Scholar 

  65. V.A. Babenko, N.M. Petrov, Phys. At. Nucl. 73, 1499 (2010)

    Google Scholar 

  66. S. König, H.W. Grießhammer, H.W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016)

    ADS  Google Scholar 

  67. S. Ando, M.C. Birse, J. Phys. G: Nucl. Part. Phys. 37, 105108 (2010)

    ADS  Google Scholar 

  68. B. Long, C.-J. Yang, Phys. Rev. C 85, 034002 (2012)

    ADS  Google Scholar 

  69. J.N. Bahcall, R.M. May, Astrophys. J. 155, 501 (1969)

    ADS  Google Scholar 

  70. M. Fukugita, T. Kubota, Phys. Rev. D 72, 071301 (2005)

    ADS  Google Scholar 

  71. R.B. Wiringa, V.G.J. Stokes, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    ADS  Google Scholar 

  72. T.-S. Park et al., Phys. Rev. C 67, 055206 (2003)

    ADS  Google Scholar 

  73. R. Schiavilla et al., Phys. Rev. C 58, 1263 (1998)

    ADS  Google Scholar 

  74. L. Koester, W. Nistler, Z. Physik 272, 189 (1975)

    ADS  Google Scholar 

  75. S. König, H.W. Grießhammer, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bayegan.

Additional information

Communicated by Vittorio Somà

Appendix A: The calculation of the LO amplitude

Appendix A: The calculation of the LO amplitude

We present here a brief LO calculation of \(^{1}S_{0}\) state of np scattering amplitude. The LO inverse amplitude by taking the two-dibaryon fields derives as below,

$$\begin{aligned} \begin{aligned} \left[ \frac{m_{N}}{4\pi }T(k;\varLambda )\right] ^{-1}&=\frac{4\pi }{m_{N}y_{s}^{2}} \\&\quad \times \frac{[\varDelta _{1}(\varLambda )+\frac{c_{1}(\varLambda )}{m_{N}}k^{2}][\varDelta _{2}(\varLambda )+\frac{c_{2}(\varLambda )}{m_{N}}k^{2}]}{\varDelta _{1}(\varLambda )+\varDelta _{2}(\varLambda ) +\frac{[c_{1}(\varLambda )+c_{2}(\varLambda )]}{m_{N}}k^2} \\&\quad +ik+\theta _{1}\varLambda +\theta _{-1}\frac{k^2}{\varLambda } +{\mathcal {O}}\left( \frac{k^{4}}{\varLambda ^{3}}\right) . \end{aligned} \end{aligned}$$
(A.1)

If here k is the smallest scale than the other scales, at large cutoff, Eq. (A.1) is equal to ERE

$$\begin{aligned} \left[ \frac{m_{N}}{4\pi }T(k;\varLambda )\right] ^{-1}=\frac{1}{a}+ik-\frac{r_{0}}{2}k^{2}-\frac{P_{0}}{4}k^{4}+\cdots , \end{aligned}$$
(A.2)

such that, for np scattering, The scattering length is \(a \simeq \)\(-23.7\) fm \(\simeq \) − (8 MeV)\(^{-1}\) [74]. and the effective range is \(r_{0}\simeq \) 2.7 fm \(\simeq \)(73 MeV)\(^{-1}\) [64], Also, The shape parameter is \(P_{0}\simeq \)2.0 \(\hbox {fm}^{3}\)\(\simeq \) (158 MeV)\(^{-3}\) [65] and \(k_{0} \simeq \)340 MeV [54] is the scattering momentum. Because of the anomalously large value of \(\mid a \mid \) that results a virtual bound state too close to threshold, its binding momentum corresponds to small scale \(\aleph \sim \) 10 MeV. The suggestion of an enlarged range of validity of \(~/\!\!\pi \)EFT is introduced, with the low momentum scale \(M_{lo}\sim m_{\pi }\sim Q\) and the EFT breakdown scale, \(M_{hi} \le M_{QCD}\sim \)1 GeV , so that \(\aleph \) appears at NLO [66, 75]. Therefore phenomenological parameters of the theory rescaled as

$$\begin{aligned} \frac{1}{a}={\mathcal {O}}\left( \frac{M_{l0}^{2}}{M_{hi}}\right) ,\quad k_{0}\sim \frac{1}{r_{0}}\sim \frac{1}{P_{0}^{1/3}}\sim \cdots ={\mathcal {O}}(M_{lo}). \end{aligned}$$
(A.3)

the amplitude can be taken in the following form:

$$\begin{aligned} T(k;\varLambda )=T^{[0]}(k;\varLambda )+T^{[1]}(k;\varLambda )+\cdots , \end{aligned}$$
(A.4)

so that the high indexes (inside the bracket) show the order of the observables and,

$$\begin{aligned} T^{[0]}(k;\varLambda )&=V^{[0]}(k;\varLambda )\Bigg [1+\frac{m_{N}}{4\pi }V^{[0]}(k;\varLambda )\Bigg (ik \nonumber \\&\quad +\theta _{1}\varLambda +\frac{k^{2}}{ \varLambda } \times \sum _{n=0}^{\infty }\theta _{-1-2n}\frac{k^{2n}}{\varLambda ^{2n}}\Bigg )\Bigg ], \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{m_{N}}{4\pi }V^{[0]}(k;\varLambda )&=\frac{m_{N}y_{s}^{2}}{4\pi }\sum _{j}\Bigg (\varDelta _{j}^{[0]}(\varLambda )+\frac{c_{j}^{[0]}(\varLambda )}{m_{N}}k^{2}\Bigg )^{-1},\qquad \qquad \end{aligned}$$
(A.6)
$$\begin{aligned} T^{[1]}(k;\varLambda )&=\Bigg (\frac{T^{[0]}(k;\varLambda )}{V^{[0]}(k;\varLambda )}\Bigg )^{2}V^{[1]}(k;\varLambda ),\qquad \qquad \qquad \qquad \end{aligned}$$
(A.7)
$$\begin{aligned} \frac{m_{N}}{4\pi }V^{[1]}(k;\varLambda )&=-\frac{m_{N}y_{s}^{2}}{4\pi }\sum _{j}\Bigg (\varDelta _{j}^{[0]}(\varLambda )+\frac{c_{j}^{[0]}(\varLambda )}{m_{N}}k^{2}\Bigg )^{-2} \nonumber \\&\quad \times \Bigg (\varDelta _{j}^{[1]}(\varLambda )+\frac{c_{j}^{[1]}(\varLambda )}{m_{N}}k^{2}\Bigg ). \end{aligned}$$
(A.8)

Since \(1{/}\mid a \mid \) is very small, it imposes an expansion of the NN \(^{1}S_{0}\) amplitude around the unitary limit [66, 75] and it takes as below:

$$\begin{aligned} \frac{1}{a^{[0]}}=0. \end{aligned}$$
(A.9)

According to Eq. (A.1), for reproducing the zero amplitude at LO requires a minimum of three non-vanishing bare parameters and scales the following form

$$\begin{aligned} \begin{aligned} {\bar{\varDelta }}_{1}^{[0]}&={\mathcal {O}}(M_{lo}) , \quad \frac{{\bar{c}}_{1}^{[0]}}{m_{N}}=0 ,\quad {\bar{\varDelta }}_{2}^{[0]}=0 , \\ \frac{{\bar{c}}_{2}^{[0]}}{m_{N}}&={\mathcal {O}}\left( \frac{1}{M_{lo}}\right) ,\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \end{aligned} \end{aligned}$$
(A.10)

for relating three non-vanishing LO bare parameters of the two dibaryon fields, \({\varDelta }_{1}^{[0]}(\varLambda )\), \({\varDelta }_{2}^{[0]}(\varLambda ),\) and \({c}_{2}^{[0]}(\varLambda )\), to found observables, we introduce

$$\begin{aligned} F(z;\varLambda )\equiv \mathrm {Re}\Bigg [\frac{m_{N}}{4\pi }T^{[0]}(\sqrt{z};\varLambda )\Bigg ]^{-1}, \end{aligned}$$
(A.11)

and impose three renormalization conditions on it the following form:

$$\begin{aligned} F(z;\varLambda )=0 , \quad \frac{\partial F(z;\varLambda )}{\partial z}\arrowvert _{z=0}=-\frac{r_{0}}{2} ,\quad F^{-1}(k_{0}^{2};\varLambda )=0, \end{aligned}$$
(A.12)

so that, we derive three parameters of two-dibaryon fields as below

$$\begin{aligned} \varDelta _{1}^{[0]}(\varLambda )= & {} \frac{m_{N}y_{s}^{2}}{4\pi }({\bar{\varDelta }}_{1}^{[0]}-\theta _{1}\varLambda +\cdots ), \end{aligned}$$
(A.13)
$$\begin{aligned} \varDelta _{2}^{[0]}(\varLambda )= & {} \frac{m_{N}y_{s}^{2}}{4\pi }\Bigg (\frac{2\theta _{1}}{r_{0}^{3}k_{0}^{2}}\Bigg [\theta _{1}(r_{0}\varLambda )^{2}-\left( \frac{r_{0}^{2}k_{0}^{2}}{2}+2\theta _{1}\theta _{-1}\right) r_{0}\varLambda \nonumber \\&+4\theta _{1}\theta _{-1}^{2}+\cdots \Bigg ]\Bigg ), \end{aligned}$$
(A.14)
$$\begin{aligned} \frac{c_{2}^{[0]}(\varLambda )}{m_{N}}= & {} \frac{m_{N}y_{s}^{2}}{4\pi }\Bigg (\frac{{\bar{c}}_{2}^{[0]}}{m_{N}}-\frac{2\theta _{1}}{r_{0}^{3}k_{0}^{4}}\Bigg [\theta _{1}(r_{0}\varLambda )^{2} \nonumber \\&-\left( \frac{r_{0}^{2}k_{0}^{2}}{2}+2\theta _{1}\theta _{-1}\right) r_{0}\varLambda +4\theta _{1}\theta _{-1}^{2}+\cdots \Bigg ]\Bigg ), \end{aligned}$$
(A.15)

where two renormalized parameters are

$$\begin{aligned} {\bar{\varDelta }}_{1}^{[0]}=\frac{r_{0}k_{0}^{2}}{2} , \quad \frac{{\bar{c}}_{2}^{[0]}}{m_{N}}=-\frac{r_{0}}{2}.\qquad \qquad \end{aligned}$$
(A.16)

Also, the prediction for shape parameter at this order is given as below [55]

$$\begin{aligned} P_{0}^{[0]}(\varLambda )=\frac{2r_{0}}{k_{0}^2}\Bigg [1+\frac{2\theta _{-1}}{r_{0}\varLambda }+{\mathcal {O}}\left( \frac{k_{0}^{2}}{r_{0}\varLambda ^{3}}\right) \Bigg ], \end{aligned}$$
(A.17)

where \(P_{0}^{[0]}k_{0}^{2}/(2r_{0})=1.03\pm 0.3\) that it has about 30\(\%\) error from a careful analysis in Ref. [65].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadmoghaddam, B., Bayegan, S. & Arani, M.M. Proton–proton fusion in new pionless EFT power counting. Eur. Phys. J. A 56, 158 (2020). https://doi.org/10.1140/epja/s10050-020-00166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00166-0

Navigation