Skip to main content
Log in

Testing for the sandwich-form covariance matrix of the quasi-maximum likelihood estimator

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

This study tests for the sandwich-form asymptotic covariance matrices entailed by conditionally heteroskedastic and/or autocorrelated regression errors or conditionally uncorrelated homoskedastic errors. In doing so, we enable the empirical researcher to estimate the asymptotic covariance matrix of the quasi-maximum likelihood estimator by supposing a possibly misspecified model for error distribution. Accordingly, we provide test methodologies by extending the approaches in Cho and White (in: Chang Y, Fomby T, Park JY (eds) Advances in econometrics: essays in honor of Peter CB Phillips. Emerald Group Publishing Limited, West Yorkshire, 2014) and Cho and Phillips (J Econ 202:45–56, 2018a) to detect the influence of heteroskedastic and/or autocorrelated regression errors on the asymptotic covariance matrix. In particular, we establish a sequential testing procedure to achieve our goal. We affirm the theory on our test statistics through simulation and apply the test statistics to energy price growth rate data for illustrative purposes; here, we also apply our test methodology to test the fully correct model hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The following URL provides the GAUSS, MATLAB, and R codes to compute the maximum test statistics and their p values for linear models: http://web.yonsei.ac.kr/jinseocho/cospimt.htm.

References

  • Andrews DWK (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817–858

    Article  MathSciNet  Google Scholar 

  • Bai X, Lam JSL (2019) A Copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied pertroleum gas freight rate, product price arbitrage and crude oil price. Energy Econ 78:412–427

    Article  Google Scholar 

  • Breusch TS (1978) Testing for autocorrelation in dynamic linear models. Aust Econ Pap 17:334–355

    Article  Google Scholar 

  • Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47:1287–1294

    Article  MathSciNet  Google Scholar 

  • Cho JS, Kim T-H, Shin Y (2015) Quantile cointegration in the autoregressive distributed lag modeling framework. J Econ 188:281–300

    Article  MathSciNet  Google Scholar 

  • Cho JS, Phillips PCB (2018a) Pythagorean generalization of testing the equality of two symmetric positive definite matrices. J Econ 202:45–56

    Article  MathSciNet  Google Scholar 

  • Cho JS, Phillips PCB (2018b) Sequentially testing polynomial model hypothesis using the power transform of regressors. J Appl Econ 33:141–159

    Article  Google Scholar 

  • Cho JS, White H (2011) Generalized runs tests for the IID hypothesis. J Econ 162:326–344

    Article  MathSciNet  Google Scholar 

  • Cho JS, White H (2014) Testing the equality of two positive-definite matrices with application to information matrix testing. In: Chang Y, Fomby T, Park JY (eds) Advances in econometrics: essays in honor of Peter CB Phillips, vol 33. Emerald Group Publishing Limited, West Yorkshire, pp 491–556

    Chapter  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

    MathSciNet  MATH  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179

    Article  MathSciNet  Google Scholar 

  • Efron B, Tibsharani RJ (1988) An introduction to the bootstrap. Chapman & Hall/CRC, London

    Google Scholar 

  • Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1008

    Article  MathSciNet  Google Scholar 

  • Fan J, Liao Y, Yao J (2015) Power enhancement in high-dimensional cross-sectional tests. Econometrica 83:1497–1541

    Article  MathSciNet  Google Scholar 

  • Gallant R (1987) Nonlinear statistical models. Wiley, New York

    Book  Google Scholar 

  • Godfrey LG (1978a) Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica 46:1293–1301

    Article  Google Scholar 

  • Godfrey LG (1978b) Testing for multiplicative heteroskedasticity. J Econ 8:227–236

    Article  MathSciNet  Google Scholar 

  • Golden RM, Henley SS, White H, Michael Kashner T (2013) New directions in information matrix testing: eigenspectrum tests. In: Chen X, Swanson NR (eds) Recent advances and future directions in causality, prediction, and specification analysis (Festschrift Hal White Conference). Springer, New York, pp 145–178

    Google Scholar 

  • Golden RM, Henley SS, White H, Michael Kashner T (2016) Generalized information matrix tests for detecting model misspecification. Econometrics 4:46

    Article  Google Scholar 

  • Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: theory. Econometrica 52:681–700

    Article  MathSciNet  Google Scholar 

  • Hong Y, White H (2005) Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73:837–901

    Article  MathSciNet  Google Scholar 

  • Li Y, Yu J, Zeng T (2018) Specification tests based on MCMC output. J Econ 207:237–260

    Article  MathSciNet  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of a lack of fit in time series models. Biometrika 65:297–303

    Article  Google Scholar 

  • Newey WK, West KD (1987) A aimple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708

    Article  MathSciNet  Google Scholar 

  • Ng S, Perron P (1996) The exaxt error in estimating the spectral density at the origin. J Time Ser Anal 17:379–408

    Article  MathSciNet  Google Scholar 

  • Robinson PM (1991) Consistent nonparametric entropy-based testing. Rev Econ Stud 58:437–453

    Article  MathSciNet  Google Scholar 

  • Skaug H, Tjøstheim D (1996) Measures of distance between densities with applications to testing for serial independence, time series analysis in memory of E. J. Hannan. Springer, New York, pp 363–377

    Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Article  MathSciNet  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48:817–838

    Article  MathSciNet  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 48:1–25

    MathSciNet  MATH  Google Scholar 

  • White H, Domowitz I (1984) Nonlinear regression with dependent observations. Econometrica 52:143–161

    Article  MathSciNet  Google Scholar 

  • Wu CFJ (1986) Jacknife bootstrap and other resampling methods in regression analysis. Ann Stat 14:1261–1295

    MATH  Google Scholar 

Download references

Acknowledgements

The Editor-in-Chief, Jesús López-Fidalgo, the associate editor, and two anonymous referees provided very helpful comments for which we are most grateful. The authors benefitted from discussions with the seminar participants at BIT. The responsibility for any errors and shortcomings in this work remains ours. Cho is grateful for the research Grant by the Ministry of Education in the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A2A01035256). Huo is grateful for the research Grant support by National Natural Science Foundation of China (No.71803009) and MOE Project of Humanities and Sciences (No. 17YJC790057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Proof of Theorem 1

For each \(i=1\) and 2, Theorem 2 of CP implies that for \(j=1\) and 2, the local alternative approximations of \(\widehat{{\mathfrak {B}}}_{j,n}^{(i)}\), \(\widehat{{\mathfrak {S}}}_{j,n}^{(i)}\), and \(\widehat{{\mathfrak {E}}}_{j,n}^{(i)}\) are equivalent and obtained as \(\frac{1}{2} \mathrm {tr}[({\mathbf {V}}_{*}^{(i)} + \sqrt{n}{\mathbf {K}}_{o,n}^{(i)})^{2}] + o_{{\mathbb {P}}}(1)\), where \({\mathbf {K}}_{o,n}^{(i)} := {\mathbf {M}}_{o,n}^{(i)} + \sum _{j=1}^{d} ( \widehat{\theta }_{j,n} - \theta _{j*} ){\mathbf {S}}_{j,*}^{(i)}\), \({\mathbf {M}}_{o,n}^{(i)} := ({\mathbf {Q}}_{*}^{(i)})^{-1}({\mathbf {Q}}_{n}^{(i)}(\varvec{\xi }_{*}) - {\mathbf {P}}_{n}^{(i)}(\varvec{\xi }_{*}) - {\mathbf {Q}}_{*n}^{(i)} + {\mathbf {P}}_{*n}^{(i)})\), and \({\mathbf {S}}_{j*}^{(i)} := ({\mathbf {P}}_{*}^{(i)})^{-1} [{\partial }/({\partial \theta _{j}}) {\mathbf {Q}}^{(i)}(\varvec{\xi }_{*}) - {\partial }/({\partial \theta _{j}}) {\mathbf {P}}_{*}^{(i)}(\varvec{\xi }_{*})]\). Furthermore, the symmetry between \({\mathbf {P}}_{*}^{(i)}\) and \({\mathbf {Q}}_{*}^{(i)}\) implies that for \(j=1, 2\), the local alternative approximations of \(\widetilde{{\mathfrak {B}}}_{j,n}^{(i)}\), \(\widetilde{{\mathfrak {S}}}_{j,n}^{(i)}\), and \(\widetilde{{\mathfrak {E}}}_{j,n}^{(i)}\) are equivalently obtained as \(\frac{1}{2} \mathrm {tr}[(\widetilde{{\mathbf {V}}}_{*}^{(i)} + \sqrt{n}\widetilde{{\mathbf {K}}}_{o,n}^{(i)})^{2}] + o_{{\mathbb {P}}}(1)\), where \(\widetilde{{\mathbf {V}}}_{*}^{(i)} := ({\mathbf {P}}_{*}^{(i)})^{-1} {\bar{{\mathbf {P}}}}_{*}^{(i)} - ({\mathbf {Q}}_{*}^{(i)})^{-1} {\bar{{\mathbf {Q}}}}_{*}^{(i)}\), \(\widetilde{{\mathbf {K}}}_{o,n}^{(i)} := \widetilde{{\mathbf {M}}}_{o,n}^{(i)} + \sum _{j=1}^{d} ( \widehat{\theta }_{j,n} - \theta _{j*} ) \widetilde{{\mathbf {S}}}_{j,*}\), \(\widetilde{{\mathbf {M}}}_{o,n}^{(i)} := ({\mathbf {P}}_{*}^{(i)})^{-1} ({\mathbf {P}}_{n}^{(i)}(\varvec{\xi }_{*}) - {\mathbf {Q}}_{n}^{(i)}(\varvec{\xi }_{*}) - {\mathbf {P}}_{*n}^{(i)} + {\mathbf {Q}}_{*n}^{(i)})\), and \(\widetilde{{\mathbf {S}}}_{j*}^{(i)} := ({\mathbf {Q}}_{*}^{(i)})^{-1} [ {\partial }/({\partial \theta _{j}}) {\mathbf {P}}_{*}^{(i)}(\varvec{\xi }_{*}) - {\partial }/({\partial \theta _{j}}) {\mathbf {Q}}^{(i)}(\varvec{\xi }_{*}) ]\). That is, \({\mathbf {V}}_{*}^{(i)} = -\widetilde{{\mathbf {V}}}_{*}^{(i)}\) and \({\mathbf {K}}_{o,n}^{(i)} = -{\mathbf {K}}_{o,n}^{(i)}\), so that for \(j=1\) and 2, the local alternative approximations of \(\widehat{{\mathfrak {B}}}_{j,n}^{(i)}\), \(\widehat{{\mathfrak {S}}}_{j,n}^{(i)}\), and \(\widehat{{\mathfrak {E}}}_{j,n}^{(i)}\) are equivalent to the local alternative approximations of \(\widetilde{{\mathfrak {B}}}_{j,n}^{(i)}\), \(\widetilde{{\mathfrak {S}}}_{j,n}^{(i)}\), and \(\widetilde{{\mathfrak {E}}}_{j,n}^{(i)}\). Therefore, it now follows that

$$\begin{aligned}&\widehat{{\mathfrak {M}}}_{n}^{(i)}\\&\quad := \max _{j=1,2}\left[ \widehat{{\mathfrak {B}}}_{j,n}^{(i)}, \widehat{{\mathfrak {S}}}_{j,n}^{(i)}, \widehat{{\mathfrak {E}}}_{j,n}^{(i)}, \widetilde{{\mathfrak {B}}}_{j,n}^{(i)}, \widetilde{{\mathfrak {S}}}_{j,n}^{(i)}, \widetilde{{\mathfrak {E}}}_{j,n}^{(i)} \right] = \frac{1}{2} \mathrm {tr}[({\mathbf {V}}_{*}^{(i)} + \sqrt{n}{\mathbf {K}}_{o,n}^{(i)})^{2}] + o_{{\mathbb {P}}}(1). \end{aligned}$$

In addition, Corollary 1 of CP implies that \(\frac{1}{2} \mathrm {tr}[(\sqrt{n} {\mathbf {K}}_{o,n}^{(i)})^{2}] \Rightarrow \varvec{{\mathcal {Z}}}^{(i)\prime }\varvec{{\varOmega }}_{*}^{(i)} \varvec{{\mathcal {Z}}}^{(i)}\), suggesting that \(\frac{1}{2} \mathrm {tr}[({\mathbf {V}}_{*}^{(i)} + \sqrt{n}{\mathbf {K}}_{o,n}^{(i)})^{2}] \Rightarrow (\varvec{{\mathcal {Z}}}^{(i)\prime } + {\mathbf {V}}_{*}^{(i)\prime }\varvec{{\varOmega }}_{*}^{(i)-1/2}) \varvec{{\varOmega }}_{*}^{(i)} (\varvec{{\mathcal {Z}}}^{(i)} + \varvec{{\varOmega }}_{*}^{(i)-1/2} {\mathbf {V}}_{*}^{(i)})\). Note that \({\ddot{{\mathbf {V}}}}_{*}^{(i)} := \varvec{{\varOmega }}_{*}^{(i)-1/2} {\mathbf {V}}_{*}^{(i)}\), so that \(\widehat{{\mathfrak {M}}}_{n}^{(i)} \Rightarrow (\varvec{{\mathcal {Z}}}^{(i)} + {\ddot{{\mathbf {V}}}}_{*}^{(i)})'\varvec{{\varOmega }}_{*}^{(i)}(\varvec{{\mathcal {Z}}}^{(i)} + {\ddot{{\mathbf {V}}}}_{*}^{(i)})\), as desired. \(\square \)

Proof of Corollary 1

For each \(i=1\) and 2, given the null hypothesis \({\mathcal {H}}_{0}^{(i)}\), \({\bar{{\mathbf {P}}}}_{*}^{(i)} = {\bar{{\mathbf {Q}}}}_{*}^{(i)} = {\mathbf {0}}\). Therefore, Theorem 1 implies that \(\widehat{{\mathfrak {M}}}_{n}^{(i)} \Rightarrow \varvec{{\mathcal {Z}}}^{(i)\prime } \varvec{{\varOmega }}_{*}^{(i)} \varvec{{\mathcal {Z}}}^{(i)}\). \(\square \)

Proof of Theorem 2

For \(i = 1\) and 2, we first note that \(\widehat{{\mathfrak {M}}}_{n}^{(i)} = \max [ {\dot{{\mathfrak {M}}}}_{n}^{(i)}, {\ddot{{\mathfrak {M}}}}_{n}^{(i)}]\), where \({\dot{{\mathfrak {M}}}}_{n}^{(i)} := \max _{j=1,2}[\widehat{{\mathfrak {B}}}_{j,n}^{(i)}, \widehat{{\mathfrak {S}}}_{j,n}^{(i)},\) \(\widehat{{\mathfrak {E}}}_{j,n}^{(i)}]\) and \({\ddot{{\mathfrak {M}}}}_{n}^{(i)} := \max _{j=1,2}[\widetilde{{\mathfrak {B}}}_{j,n}^{(i)}, \widetilde{{\mathfrak {S}}}_{j,n}^{(i)}, \widetilde{{\mathfrak {E}}}_{j,n}^{(i)}]\). Here, the leading term of \({\dot{{\mathfrak {M}}}}_{n}^{(i)}\) is determined by \({\dot{\mu }}_{*}^{(i)} := \max _{j=1, 2}[{\dot{{\mathfrak {B}}}}_{j,*}^{(i)}, {\dot{{\mathfrak {S}}}}_{j,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{j,*}^{(i)}]\), where \({\dot{{\mathfrak {B}}}}_{2*}^{(i)} := ({\dot{\delta }}_{*}^{(i)})^{2} + 2{\dot{\zeta }}_{*}^{(i)}\), \({\dot{{\mathfrak {S}}}}_{1*}^{(i)}:= ({\dot{\delta }}_{*}^{(i)})^{2} + 2{\dot{\gamma }}_{*}^{(i)}\), and \({\dot{{\mathfrak {S}}}}_{2*}^{(i)}:= ({\dot{\eta }}_{*}^{(i)})^{2} + 2{\dot{\zeta }}_{*}^{(i)}\). Here, \(({\dot{\delta }}_{*}^{(i)})^{2}\) is dominated by \(({\dot{\tau }}_{*}^{(i)})^{2}\) or \(({\dot{\eta }}_{*}^{(i)})^{2}\) from the fact that \({\dot{\delta }}_{*}^{(i)} \in [{\dot{\eta }}_{*}^{(i)}, {\dot{\tau }}_{*}^{(i)}]\) and \({\dot{\eta }}_{*}^{(i)} \ge -1\). Therefore, it now follows that \({\dot{\mu }}_{*}^{(i)} = \max [{\dot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {S}}}}_{2,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{2,*}^{(i)} ]\).

Likewise, if we let \({\ddot{\mu }}_{*}^{(i)}\) be the leading term of \({\ddot{{\mathfrak {M}}}}_{n}^{(i)}\), \({\ddot{\mu }}_{*}^{(i)} = \max [{\ddot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {S}}}}_{2,*}^{(i)}, {\ddot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {E}}}}_{2,*}^{(i)}]\), where \({\ddot{{\mathfrak {S}}}}_{2,*}^{(i)}:= ({\ddot{\eta }}_{*}^{(i)})^{2} + 2{\ddot{\gamma }}_{*}^{(i)}\). Therefore, it now follows that \(\mu _{*}^{(i)} = \max [{\dot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {S}}}}_{2,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{2,*}^{(i)}, {\ddot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {S}}}}_{2,*}^{(i)},\) \({\ddot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {E}}}}_{2,*}^{(i)}]\), and further \({\dot{{\mathfrak {S}}}}_{2,*}^{(i)} \le \max [{\dot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {B}}}}_{1,*}^{(i)}]\) and \({\ddot{{\mathfrak {S}}}}_{2,*}^{(i)} \le \max [{\ddot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {B}}}}_{1,*}^{(i)}]\). Therefore, we can further simplify \(\mu _{*}^{(i)}\): \(\mu _{*}^{(i)} = \max [{\dot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\dot{{\mathfrak {E}}}}_{2,*}^{(i)},\) \( {\ddot{{\mathfrak {B}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {E}}}}_{1,*}^{(i)}, {\ddot{{\mathfrak {E}}}}_{2,*}^{(i)}]\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, L., Cho, J.S. Testing for the sandwich-form covariance matrix of the quasi-maximum likelihood estimator. TEST 30, 293–317 (2021). https://doi.org/10.1007/s11749-020-00719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-020-00719-x

Keywords

Mathematics Subject Classification

Navigation