Skip to main content

Advertisement

Log in

Intelligent object recognition in underwater images using evolutionary-based Gaussian mixture model and shape matching

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Object recognition in underwater images becomes a challenging task because of its poor visibility conditions. Marine scientists often prefer automation tools for object recognition as large amount of data is captured everyday with the help of autonomous underwater vehicles. The challenge for classification in such underwater images is the limited color information. An attempt is made to recognize objects in underwater images using an adaptive Gaussian mixture model. The Gaussian mixture model performs accurate object segmentation provided the number of clusters is predefined. Optimization techniques like genetic algorithm, particle swarm optimization and differential evolution were analyzed for initializing the parameter set. Differential evolution is known for its accurate decision making in fewer iterations and proved to be better for initializing the number of clusters for the Gaussian mixture model. Further for object recognition, inner distance shape matching technique was applied. The proposed classification method achieved a maximum accuracy of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chuang, M.-C., Hwang, J.-N., Williams, K.: A feature learning and object recognition framework for underwater fish images. IEEE Trans. Image Process. 25(4), 1862–1872 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Hou, G.-J., Luan, X., Song, D.-L., Ma, X.-Y.: Underwater man-made object recognition on the basis of color and shape features. J. Coastal Res. 32(5), 1135–1141 (2015)

    Google Scholar 

  3. Rizzini, D.L., Kallasi, F., Oleari, F., Caselli, S.: Investigation of vision-based underwater object detection with multiple datasets. Int. J. Adv. Robot. Syst. 12, 77 (2015). https://doi.org/10.5772/60526

    Article  Google Scholar 

  4. Wang, H.B., Dong, X., Shen, J., Wu, X.W., Chen, Z:. Saliency-based adaptive object extraction for color underwater images. In: Applied Mechanics and Materials, vol. 347, pp. 3964–3970. Trans Tech Publications (2013)

  5. Williams, D.P.: On adaptive underwater object detection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

  6. Chen, Z., Zhang, Z., Yang, B., Dai, F., Fan, T., Wang, H.: Underwater object segmentation based on optical features. Sensors 18(1), 196 (2018)

    Article  Google Scholar 

  7. Chen, Z., Zhao, T., Cheng, N., Sun, X., Fu, X.: Towards underwater object recognition based on supervised learning. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp. 1–4. IEEE (2018)

  8. Jadoun, V.K., Gupta, N., Niazi, K.R., Swarnkar, A.: Dynamically controlled particle swarm optimization for large scale non-convex economic dispatch problems. Wiley, New York (2014)

    Google Scholar 

  9. Das, A., Panda, S.S., Sabut, S.: Detection of liver tumor in CT images using watershed and hidden Markov random field expectation maximization algorithm. In: Mandal J., Dutta P., Mukhopadhyay S. (eds.) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol. 776. Springer, Singapore (2017)

  10. Abdulbaqi, H.S., Jafri, M.Z.M., Omar, A.F., Mutter, K.N., Abood, L.K., Mustafa, I.S.B.: Segmentation and estimation of brain tumor volume in computed tomography scan images using hidden Markov random field expectation maximization algorithm. In: 2015 IEEE Student Conference on Research and Development (SCOReD), pp. 55–60. IEEE (2015)

  11. Su, J., Liu, S., Song, J.: A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput. Methods Progr. Biomed. 152, 115–123 (2017)

    Article  Google Scholar 

  12. Liu, Z., Huang, K., Tan, T.: Foreground object detection using top-down information based on EM framework. IEEE Trans. Image Process. 21(9), 4204–4217 (2012)

    Article  MathSciNet  Google Scholar 

  13. Han, X.-F., Jin, J.S., Wang, M.-J., Jiang, W., Gao, L., Xiao, L.-P.: Video fire detection based on Gaussian Mixture Model and multi-color features. SIViP 11(8), 1419–1425 (2017)

    Article  Google Scholar 

  14. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  15. Khan, A., ur Rehman, Z., Jaffar, M.A., Ullah, J., Din, A., Ali, A., Ullah, N.: Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI). SIViP 13(5), 833–841 (2019)

    Article  Google Scholar 

  16. Chang, D.-X., Zhang, X.-D., Zheng, C.-W.: A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recogn. 42(7), 1210–1222 (2009)

    Article  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  18. Chandra, A., Chattopadhyay, S.: A novel approach for coefficient quantization of low-pass finite impulse response filter using differential evolution algorithm. SIViP 8(7), 1307–1321 (2014)

    Article  Google Scholar 

  19. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  20. Wang, N., Li, Q., Abd El-Latif, A.A., Zhang, T., Niu, X.: Toward accurate localization and high recognition performance for noisy iris images. Multimed. Tools Appl. 71(3), 1411–1430 (2014)

    Article  Google Scholar 

  21. Peng, J., Wang, N., Abd El-Latif A.A, Li, Q., Niu, X.: Finger-vein verification using Gabor filter and sift feature matching. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 45–48. IEEE (2012)

  22. Peng, J., Li, Q., Abd El-Latif, A.A., Wang, N., Niu, X.: Finger vein recognition with gabor wavelets and local binary patterns. IEICE Trans. Inf. Syst. 96(8), 1886–1889 (2013)

    Article  Google Scholar 

  23. Zhang, T., Han, Q., Abd El-Latif, A.A., Bai, X., Niu, X.: 2-D cartoon character detection based on scalable-shape context and hough voting. Inf. Technol. J. 12(12), 2342–2349 (2013)

    Article  Google Scholar 

  24. http://fishdb.sinica.edu.tw/. Accessed 27 Aug 2019

  25. http://www.fishbase.org. Accessed 27 Aug 2019

  26. http://fishesofaustralia.net.au. Accessed 27 Aug 2019

  27. http://indiabiodiversity.org. Accessed 27 Aug 2019

  28. http://www.macaubiodiversity.org. Accessed 27 Aug 2019

  29. Jing, H., He, X., Han, Q., Abd El-Latif, A.A., Niu, X.: Saliency detection based on integrated features. Neurocomputing 129, 114–121 (2014)

    Article  Google Scholar 

  30. Maestro-Montojo, J., Salcedo-Sanz, S., Merelo, J.J.: New solver and optimal anticipation strategies design based on evolutionary computation for the game of MasterMind. Evol. Intel. 6(4), 219–228 (2014)

    Article  Google Scholar 

  31. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99., vol. 3 (2002)

  32. Sherin, B.M., Supriya, M.H., Saseendran Pillai, P.R.: Underwater acoustic target classification system using SVM. Int. J. Electron. Commun. Eng. ISSN (P): 2278-9901, vol. 2, no. 5, pp. 73–80 (2013)

  33. Bai, X., Zhang, T., Wang, C., Abd El-Latif, A.A., Niu, X.: A fully automatic player detection method based on one-class SVM. IEICE Trans. Inf. Syst. 96(2), 387–391 (2013)

    Article  Google Scholar 

  34. Gao, L., Xu, H.: Underwater obstacle classification method for forward-looking sonar of the AUV. Int. Soc. Offshore Polar Eng. (2016)

  35. Chang, R., Wang, Y., Hou, J.,Qiu, S., Nian, R., Bo, H, Lendasse, A.: Underwater object detection with efficient shadow-removal for side scan sonar images. In: OCEANS 2016-Shanghai, pp. 1–5. IEEE (2016)

  36. Son, H.S., Park, J.B., Joo, Y.H.: Fuzzy c-means-based intelligent tracking algorithm for an underwater manoeuvring target. IET Radar Sonar Navig. 8(9), 1042–1050 (2014)

    Article  Google Scholar 

  37. He, Y., Zheng, B., Ding, Y., Yang, H.: Underwater image edge detection based on K-means algorithm. In: Oceans-St. John’s, 2014, pp. 1–4. IEEE (2014)

  38. Yao, H., Duan, Q., Li, D., Wang, J.: An improved K-means clustering algorithm for fish image segmentation. Math. Comput. Model. 58(3), 790–798 (2013)

    Article  Google Scholar 

  39. Lee, D., Kim, G., Kim, D., Myung, H., Choi, H.-T.: Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Eng. 48, 59–68 (2012)

    Article  Google Scholar 

  40. Boudhane, M., Nsiri, B.: Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 39, 226–238 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srividhya Kannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S. Intelligent object recognition in underwater images using evolutionary-based Gaussian mixture model and shape matching. SIViP 14, 877–885 (2020). https://doi.org/10.1007/s11760-019-01619-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01619-w

Keywords

Navigation