Skip to main content
Log in

Geometry and Polarization Effects in Designing Metallic-Semiconductor Nanostructures for Plasmonic Hot Carrier Collection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hot carrier collection assisted with surface plasmon integrated with metallic-semiconductor nanostructures directs a way for direct photoelectric conversion, which could be utilized for a photochemical reaction or photovoltaic energy conversion. Modeling plasmon-assisted thermal carrier generation, transport, and injection across the Schottky barrier helps us to acknowledge design considerations for these devices. Here, the effects of the nanostructure’s geometry and light polarization on hot electron collection are emphasized by analyzing a simple structure of rectangular gold nanorod and a sophisticated 2D Au/TiO2 nanocavity arrays designed by our group. The high electric field intensity inside the metallic nanostructure at the plasmon frequency enhances the hot electron generation shown here. The momentum distribution of hot electrons is determined by the nanostructure’s geometry and light polarization, which mostly affects collection efficiency. The structural and optical design is known to elevate the internal electric field from ordinary to the metal-semiconductor pathway that assists in producing hot carriers that accumulate adequate motion through the Schottky barrier, which further increases the effectiveness of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications, Springer Science & Business Media

  2. Schaadt D, Feng B, Yu E (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  CAS  Google Scholar 

  3. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  CAS  Google Scholar 

  4. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  5. Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10:25–34

    Article  CAS  Google Scholar 

  6. Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12:5014–5019

    Article  CAS  Google Scholar 

  7. Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251

    Article  CAS  Google Scholar 

  8. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  9. Nishijima Y, Ueno K, Yokota Y, Murakoshi K, Misawa H (2010) Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J Phys Chem Lett 1:2031–2036

    Article  CAS  Google Scholar 

  10. García de Arquer FP, Mihi A, Konstantatos G (2015) Large-area plasmonic-crystal–hot-electron-based photodetectors. ACS Photonics 2:950–957

    Article  CAS  Google Scholar 

  11. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  12. Narang P, Sundararaman R, Atwater HA (2016) Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5:96–111

    Article  CAS  Google Scholar 

  13. Govorov AO, Zhang H, Gun’ko YK (2013) Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 117:16616–16631

    Article  CAS  Google Scholar 

  14. Kumarasinghe CS, Premaratne M, Bao Q, Agrawal GP (2015) Theoretical analysis of hot electron dynamics in nanorods. Sci Rep 5:12140

    Article  CAS  Google Scholar 

  15. Manjavacas A, Liu JG, Kulkarni V, Nordlander P (2014) Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:7630–7638

    Article  CAS  Google Scholar 

  16. Bernardi M, Mustafa J, Neaton JB, Louie SG (2015) Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat Commun 6:7044

    Article  CAS  Google Scholar 

  17. Sundararaman R, Narang P, Jermyn AS, Goddard WA III, Atwater HA (2014) Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun 5:5788

    Article  CAS  Google Scholar 

  18. Scales C, Berini P (2010) Thin-film schottky barrier photodetector models. IEEE J Quantum Electron 46:633–643

    Article  CAS  Google Scholar 

  19. Brown AM, Sundararaman R, Narang P, Goddard WA III, Atwater HA (2016) Non-radiative plasmon decay and hot carrier dynamics: effects of phonons. Surfaces and Geometry ACS nano 10:957–966

    Article  CAS  Google Scholar 

  20. Chou JB, Fenning DP, Wang Y, Polanco MAM, Hwang J, El-Faer A, Sammoura F, Viegas J, Rasras M, Kolpak AM (2015) Broadband photoelectric hot carrier collection with wafer-scale metallic-semiconductor photonic crystals. Photovoltaic specialist conference (PVSC) IEEE 42nd: 1-6

  21. Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys Rev B Condens Matter 57:11334–11340

    Article  CAS  Google Scholar 

  22. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  23. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  24. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637

    Article  CAS  Google Scholar 

  25. Yu YY, Chang SS, Lee CL, Wang CC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  26. Elsharif AM (2018) The effect of the electron tunneling on the photoelectric hot electrons generation in metallic-semiconductor nanostructures. Chemical Physics Letter 691:224–230

    Article  CAS  Google Scholar 

  27. Leenheer AJ, Narang P, Lewis NS, Atwater HA (2014) Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. J Appl Phys 115:134301

    Article  CAS  Google Scholar 

  28. White TP, Catchpole KR (2012) Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl Phys Lett 101:073905

    Article  CAS  Google Scholar 

  29. Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, Halas NJ (2013) Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett 13:1687–1692

    Article  CAS  Google Scholar 

  30. Maradudin A, Mills D (1975) Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Phys Rev B Condens Matter 11:1392–1415

    Article  CAS  Google Scholar 

  31. Uskov AV, Protsenko IE, Ikhsanov RS, Babicheva VE, Zhukovsky SV, Lavrinenko AV, O'Reilly EP, Xu H (2014) Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects. Nanoscale 6:4716–4727

    Article  CAS  Google Scholar 

  32. Elfaer AM, Wang Y, Li XH, Chou JB, Kim SG (2016) Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells. MRS Advances 1:831–837

    Article  CAS  Google Scholar 

  33. Chou JB, Yeng YX, Lee YE, Lenert A, Rinnerbauer V, Celanovic I, Soljačić M, Fang NX, Wang EN, Kim SG (2014) Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv Mater 26:8041–8045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the use of the service and facilities of Imam Abdulrahman Bin Faisal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma M. Elsharif.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharif, A.M. Geometry and Polarization Effects in Designing Metallic-Semiconductor Nanostructures for Plasmonic Hot Carrier Collection. Plasmonics 15, 1729–1737 (2020). https://doi.org/10.1007/s11468-020-01196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01196-6

Keywords

Navigation