Skip to main content
Log in

A physics-based and data-driven hybrid modeling method for accurately simulating complex contact phenomenon

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Traditional physics-based contact models have been widely used for describing various contact phenomena such as robotic grasping and assembly. However, difficulties in carrying out contact parameter identification as well as the relatively low measurement accuracy due to complex contact geometry and surface uncertainties are the limiting factors of the physics-based contact modeling methods. In this paper, we present a novel hybrid contact modeling (HCM) method as an endeavor to discover models that can more accurately simulate practical contact scenarios than traditional physics-based contact models. The proposed method is implemented by combining a physics-based contact model and a data-driven error model. This approach is validated by using simulations of a bouncing ball, a flat-shot, and a three-dimensional (3D) peg-in-hole. The results demonstrate the feasibility and consistent performance of the HCM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Antonello, A., Sansone, F., Francesconi, A., Carli, R., Carron, A.: A novel approach to the simulation of on-orbit rendezvous and docking maneuvers in a laboratory environment through the aid of an anthropomorphic robotic arm. In: IEEE International Workshop on Metrology for Aerospace, Benevento, Italy, pp. 347–352 (2014)

    Google Scholar 

  2. Uyama, N., Nakanishi, H., Nagaoka, K., Yoshida, K.: Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, pp. 4477–4482 (2012)

    Google Scholar 

  3. Yu, Z.W., Liu, X.F., Cai, G.P.: Dynamics modeling and control of a 6-DOF space robot with flexible panels for capturing a free floating target. Acta Astronaut. 128(1), 560–572 (2016)

    Google Scholar 

  4. Huang, P.F., Wang, D.K., Meng, Z.J., Zhang, F., Liu, Z.X.: Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans. Mechatron. 21(5), 2260–2271 (2016)

    Google Scholar 

  5. Luo, L.Z., Nahon, M.: Development and validation of geometry-based compliant contact models. J. Comput. Nonlinear Dyn. 6(1), 011004 (2011)

    Google Scholar 

  6. Ambrósio, J.A.C.: Contact and impact models for vehicle crashworthiness simulation. Int. J. Crashworthiness 8(1), 73–86 (2003)

    Google Scholar 

  7. Anderson, R.W.G., Long, A.D., Serre, T.: Phenomenological continuous contact–impact modelling for multibody simulations of pedestrian–vehicle contact interactions based on experimental data. Nonlinear Dyn. 58(1–2), 199–208 (2009)

    MATH  Google Scholar 

  8. Diels, E., Odenthal, T., Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., Saeys, W., Ramon, H., Smeets, B.: Development of a visco-elastoplastic contact force model and its parameter determination for apples. Postharvest Biol. Technol. 120(1), 157–166 (2016)

    Google Scholar 

  9. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Banerjee, A., Chanda, A., Das, R.: Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical review. Arch. Comput. Methods Eng. 24(2), 397–422 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145(1), 171–187 (2018)

    Google Scholar 

  12. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    MATH  Google Scholar 

  13. Yu, J., Chu, J., Li, Y., Guan, L.: An improved compliant contact force model using a piecewise function for impact analysis in multibody dynamics. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 234(2), 424–432 (2020)

    Google Scholar 

  14. Alves, J., Peixinho, N., Da Silva, M.T., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015)

    Google Scholar 

  15. Pàmies-Vilà, R., Font-Llagunes, J.M., Lugrís, U., Cuadrado, J.: Parameter identification method for a three-dimensional foot-ground contact model. Mech. Mach. Theory 75(1), 107–116 (2014)

    Google Scholar 

  16. Sherif, H.A., Almufadi, H.A.: Identification of contact parameters from elastic-plastic impact of hard sphere and elastic half space. Wear 368(1), 358–367 (2016)

    Google Scholar 

  17. Coutinho, F., Cortesão, R.: Online stiffness estimation for robotic tasks with force observers. Control Eng. Pract. 24(1), 92–105 (2014)

    Google Scholar 

  18. Sørensen, S.E., Hansen, M.R., Ebbesen, M.K., Mouritsen, O.Ø.: Implicit identification of contact parameters in a continuous chain model. Model. Identif. Control 32(1), 1–15 (2011)

    Google Scholar 

  19. Gong, S.W., Lee, H.P., Lu, C.: An approach for the estimation of contact force on a human head induced by a foreign-object impact. IEEE Trans. Biomed. Eng. 54(5), 956–958 (2007)

    Google Scholar 

  20. Erickson, D., Weber, M., Sharf, I.: Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 22(1), 41–57 (2003)

    Google Scholar 

  21. Diolaiti, N., Melchiorri, C., Stramigioli, S.: Contact impedance estimation for robotic systems. IEEE Trans. Robot. 21(5), 925–935 (2005)

    Google Scholar 

  22. Verscheure, D., Sharf, I., Bruyninckx, H., Swevers, J., Schutter, J.D.: Identification of contact parameters from stiff multi-point contact robotic operations. Int. J. Robot. Res. 29(4), 367–385 (2010)

    Google Scholar 

  23. Navarro, H.A., Braun, M.P.D.: Determination of the normal spring stiffness coefficient in the linear spring–dashpot contact model of discrete element method. Powder Technol. 246(9), 707–722 (2013)

    Google Scholar 

  24. Cao, D.Q., Yang, Y., Chen, H.T., Wang, D.Y., Jiang, G.Y., Li, C.G., Wei, J., Zhao, K.: A novel contact force model for the impact analysis of structures with coating and its experimental verification. Mech. Syst. Signal Process. 70–71(175), 1056–1072 (2016)

    Google Scholar 

  25. Boos, M., McPhee, J.: Volumetric modeling and experimental validation of normal contact dynamic forces. J. Comput. Nonlinear Dyn. 8(2), 021006 (2013)

    Google Scholar 

  26. Bizarre, L., Nonato, F., Cavalca, K.L.: Formulation of five degrees of freedom ball bearing model accounting for the nonlinear stiffness and damping of elastohydrodynamic point contacts. Mech. Mach. Theory 124(1), 179–196 (2018)

    Google Scholar 

  27. Römer, U.J., Fidlin, A., Seemann, W.: Explicit analytical solutions for two-dimensional contact detection problems between almost arbitrary geometries and straight or circular counterparts. Mech. Mach. Theory 128(1), 205–224 (2018)

    Google Scholar 

  28. Shen, Y.H., Xiang, D., Wang, X., Jiang, L., Wei, Y.Z.: A contact force model considering constant external forces for impact analysis in multibody dynamics. Multibody Syst. Dyn. 44(4), 397–419 (2018)

    MathSciNet  Google Scholar 

  29. Wissel, T., Wagner, B., Stuber, P., Schweikard, A., Ernst, F.: Data-driven learning for calibrating galvanometric laser scanners. IEEE Sens. J. 15(10), 5709–5717 (2015)

    Google Scholar 

  30. Liu, Y.Q., Shi, J., Yang, Y.P., Lee, W.J.: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis. IEEE Trans. Ind. Appl. 48(4), 1136–1141 (2012)

    Google Scholar 

  31. Salam, M.A., Al-Alawi, S.M., Maqrashi, A.A.: An artificial neural networks approach to model and predict the relationship between the grounding resistance and length of buried electrode in the soil. J. Electrost. 64(5), 318–322 (2006)

    Google Scholar 

  32. Behera, S.K., Rene, E.R., Park, H.S.: Neural network modeling of sorption of pharmaceuticals in engineered floodplain filtration system. Expert Syst. Appl. 39(5), 6052–6060 (2012)

    Google Scholar 

  33. Ngwangwa, H.M., Heyns, P.S., Breytenbach, H.G.A., Els, P.S.: Reconstruction of road defects and road roughness classification using Artificial Neural Networks simulation and vehicle dynamic responses: application to experimental data. J. Terramech. 53(1), 1–18 (2014)

    Google Scholar 

  34. Mese, E., Torrey, D.A.: An approach for sensorless position estimation for switched reluctance motors using artifical neural networks. IEEE Trans. Power Electron. 17(1), 66–75 (2002)

    Google Scholar 

  35. Gonthier, Y.: Contact dynamics modelling for robotic task simulation. PhD dissertation, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada (2007)

  36. Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  37. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Google Scholar 

  38. Wu, S., Mou, F.L., Liu, Q., Cheng, J.: Contact dynamics and control of a space robot capturing a tumbling object. Acta Astronaut. 151(1), 532–542 (2018)

    Google Scholar 

  39. He, L., Tang, J.Y.: Study on corner contact shock of gear transmission by ADAMS software. Appl. Mech. Mater. 778, 205–211 (2015)

    Google Scholar 

  40. Eskinazi, I., Fregly, B.J.: Surrogate modeling of deformable joint contact using artificial neural networks. Med. Eng. Phys. 37(9), 885–891 (2015)

    Google Scholar 

  41. Gondhalekar, A.C., Petrov, E.P., Imregun, M.: Parameters identification for nonlinear dynamic systems via genetic algorithm optimization. J. Comput. Nonlinear Dyn. 4(4), 041002 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liang, J. & Ma, O. A physics-based and data-driven hybrid modeling method for accurately simulating complex contact phenomenon. Multibody Syst Dyn 50, 97–117 (2020). https://doi.org/10.1007/s11044-020-09746-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09746-w

Keywords

Navigation