Skip to main content
Log in

Exploration of Machine Learning to Predict Hot Ductility of Cast Steel from Chemical Composition and Thermal Conditions

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study explores the use of machine learning (ML) as a data-driven approach to estimate hot ductility of cast steel from literature data. Four ML algorithms were used to predict hot ductility by considering elemental composition and thermal conditions. Experimentally-measured reduction of area (RA) values were converted to a low-temperature limit, center-temperature, and high-temperature limit, which were represented as Gaussian curves. The prediction accuracy of the four ML models was evaluated using RMSE for these three output variables. In a case study of three steels that had different contents of alloying elements, only the Neural-net model predicted the RA trough more accurately in all cases. These results demonstrate the utility of ML models to predict hot ductility of cast steels.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Z. Li, P. La, J. Sheng, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00662-4

    Article  Google Scholar 

  2. S.C. Seo, K.S. Son, S.K. Lee, Met. Mater. Int. 14, 559 (2008)

    Article  CAS  Google Scholar 

  3. B. Kim, S. Jeong, S. Park, Met. Mater. Int. 25, 201 (2019)

    Google Scholar 

  4. C. Wang, C. Shen, X. Huo, C. Zhang, W. Xu, Nucl. Eng. Technol. (2020). https://doi.org/10.1016/j.net.2019.10.014

    Article  Google Scholar 

  5. F. Yan, Y.C. Chan, A. Saboo, J. Shah, G.B. Olson, W. Chen, CMES. 117(3), 343–366 (2018)

    Article  Google Scholar 

  6. S.F. Long, M. Zhao, X.F. He, Comput. Mater. Continua (CMC) 58, 727–760 (2019)

    Article  Google Scholar 

  7. L. Wang, Z. Mu, H. Guo, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 13(6), 512–515 (2006)

    Google Scholar 

  8. M.R. Toroghinejad, M.B. Esfahani, Rijeka: Artificial Neural Networks: Industrial and Control Engineering Applications (Intech, London, 2011)

    Google Scholar 

  9. P.Y. Chou, J.T. Tsai, J.H. Chou, IEEE Access. 4, 585–593 (2016)

    Article  Google Scholar 

  10. T. Thankachan, K. Sooryaprakash, Arab. J. Sci. Eng. 43(3), 1335–1343 (2018)

    Article  CAS  Google Scholar 

  11. S.I. Hong, Met. Mater. 6, 275–279 (2000)

    Article  Google Scholar 

  12. X.P. Li, J.K. Park, J. Choi, Met. Mater. 5, 25–32 (1999)

    Article  CAS  Google Scholar 

  13. S.C. Seo, H.J. Kim, B.H. Park, Met. Mater. Int. 12, 273 (2006)

    Article  CAS  Google Scholar 

  14. Z. Sterjovski, D. Nolan, K.R. Carpenter, J. Mater. Process. Technol. 170, 536–544 (2005)

    Article  CAS  Google Scholar 

  15. S.H. Kwon, D.G. Hong, C.H. Yim, Ironmak. Steelmak. 22, 1–2 (2019). https://doi.org/10.1080/03019233.2019.1699358

    Article  CAS  Google Scholar 

  16. A. Muller, S. Guido, Sebastopol (O’Reilly Media, California, 2016)

    Google Scholar 

  17. K. Ažman, J. Kocijan, ISA Trans. 46(4), 443–457 (2007)

    Article  Google Scholar 

  18. D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning, Neural and Statistical Classification (Ellis Horwood, New York, 1994)

    Google Scholar 

  19. A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, S.R. Kalidindi, Integr. Mater. Manuf. Innov. 3, 8 (2014)

    Article  Google Scholar 

  20. A. Muller, S. Guido, Sebastopol (O’Reilly Media, California, 2016)

    Google Scholar 

  21. Q. Liu, X. Zhang, B. Wang, in Science and Technology of Casting Processes, ed. by M. Srinivasan (InTech, London, 2012)

    Google Scholar 

  22. C. Spradbery, B. Mintz, Ironmak. Steelmak. 32, 319–324 (2005)

    Article  CAS  Google Scholar 

  23. Q. Liu, X. Zhang, B. Wang, in Science and Technology of Casting Processes, ed. by M. Srinivasan (InTech, London, 2012)

    Google Scholar 

  24. Z.W. Xu, X.M. Liu, K. Zhang, IEEE Access. 7, 47068–47078 (2019)

    Article  Google Scholar 

  25. L. Lawrence, J. Mach. Learn. Res. 6, 1783–1816 (2005)

    Google Scholar 

  26. N. Brieman, Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  27. L. Breiman, Mach. Learn. 24(20), 123–140 (1996)

    Google Scholar 

  28. G. Louppe, Doctoral dissertation, University of Liège Liège, Belgium, 2014

  29. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, 2006)

    Google Scholar 

  30. E. Ceperic, V. Ceperic, A. Baric, IEEE Trans. Power Syst. 28(4), 4356–4364 (2013)

    Article  Google Scholar 

  31. H. Wang, D. Hu, in Proceedings of the International Conference on Neural Networks and Brain, vol. 1 (2005)

  32. L. Bottou, C.J. Lin, Large Scale Kernel Machines (MIT press, Cambridge, 2007)

    Book  Google Scholar 

  33. N. Buduma, Sebastopol (O’Reilly Media, California, 2017)

    Google Scholar 

  34. E. Maleki, O. Unal, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00448-3

    Article  Google Scholar 

  35. C.H. Park, D. Cha, M. Kim, Met. Mater. Int. 25, 768–778 (2019)

    Article  Google Scholar 

  36. P.L. Narayana, C. Li, J. Hong, Met. Mater. Int. 25, 1063–1071 (2019)

    Article  CAS  Google Scholar 

  37. S. Singh, H. Bhadeshia, D. MacKay, H. Carey, I. Martin, Ironmak. Steelmak. 25, 355–365 (1998)

    CAS  Google Scholar 

  38. F.D. Foresee, M.T. Hagan, in Proceedings of the International Conference on Neural Networks (1997)

  39. M. Mesbah, A. Fattahi, A.R. Bushroa, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00495-w

    Article  Google Scholar 

  40. Y.C. Lin, H. Yang, D. Chen, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00435-8

    Article  Google Scholar 

  41. P.J. Angeline, G.M. Saunders, J.B. Pollack, IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  CAS  Google Scholar 

  42. X. Yao, Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  43. N. Sandhya, V. Sowmya, C.R. Bandaru, G.R. Babu, Int. J. Recent Technol. Eng. 8(3), 235–241 (2019)

    Article  Google Scholar 

  44. I. Santos, J. Nieves, Y.K. Penya, P.G. Bringas, in ICCAS-SICE 2009: ICROS-SICE International Joint Conference 2009 (2009)

  45. S. Guoa, J. Yub, X. Liuc, C. Wang, Q. Jiang, Comput. Mater. Sci. 160, 1–8 (2019)

    Article  Google Scholar 

  46. J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, NPJ Comput. Mater. 5, 1–36 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Yim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D., Kwon, S. & Yim, C. Exploration of Machine Learning to Predict Hot Ductility of Cast Steel from Chemical Composition and Thermal Conditions. Met. Mater. Int. 27, 298–305 (2021). https://doi.org/10.1007/s12540-020-00713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00713-w

Keywords

Navigation