Skip to main content
Log in

Understanding Crack Formation Mechanisms of Ti–48Al–2Cr–2Nb Single Tracks During Laser Powder Bed Fusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The crack formation mechanisms of Ti–48Al–2Cr–2Nb single tracks processed by laser powder bed fusion were extensively investigated in a wide range of laser powers and scan speeds. The crack patterns were categorized by their directionalities, which were parallel (longitudinal crack) and/or perpendicular (transverse crack) to the scan direction. For the representative process conditions of the keyhole, transition, and conduction modes, cracking behaviors were characterized by combining the fractography and the microstructural analysis. Further, thermal-mechanical finite element method simulations were performed to predict the distribution of temperatures and thermal stresses during the melt pool formation. On the basis of the combined results, the cracks formed in keyhole, transition, and conduction modes were clarified as a solidification crack and/or a thermal crack. In addition, the formation of these cracks was thoroughly understood in terms of thermal stresses and microstructural factors that affect the crack susceptibility. Finally, comprehensive mechanisms responsible for cracking of Ti–48Al–2Cr–2Nb single tracks under laser powder bed fusion were proposed for different process conditions (the keyhole, transition and conduction modes).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Clemens, S. Mayer, Mater. High Temp. 33, 560 (2016)

    CAS  Google Scholar 

  2. M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, P. Bertrand, Mater. High Temp. 33, 571 (2016)

    CAS  Google Scholar 

  3. W. Chen, Z. Li, Additive Manufacturing of Titanium Aluminides (Elsevier, Amsterdam, 2019)

    Google Scholar 

  4. P.L. Narayana, C.L. Li, J.K. Hong, S.W. Choi, C.H. Park, S.W. Kim, S.E. Kim, N.S. Reddy, J.T. Yeom, Met. Mater. Int. 25, 1063 (2019)

    CAS  Google Scholar 

  5. J. Qiu, Z. Fu, B. Liu, Y. Liu, J. Yan, D. Pan, W. Zhang, Met. Mater. Int. 25, 1564 (2019)

    CAS  Google Scholar 

  6. S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Sci. Technol. Adv. Mater. 18, 584 (2017)

    CAS  Google Scholar 

  7. J. Plocher, A. Panesar, Mater. Des. 183, 108164 (2019)

    Google Scholar 

  8. M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Addit. Manuf. 13, 61 (2017)

    CAS  Google Scholar 

  9. E. Cakmak, P. Nandwana, D. Shin, Y. Yamamoto, M.N. Gussev, I. Sen, M.H. Seren, T.R. Watkins, J.A. Haynes, Materialia 6, 100284 (2019)

    Google Scholar 

  10. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Intermetallics 19, 776 (2011)

    CAS  Google Scholar 

  11. M. Seifi, A.A. Salem, D.P. Satko, U. Ackelid, S.L. Semiatin, J.J. Lewandowski, J. Alloys Compd. 729, 1118 (2017)

    CAS  Google Scholar 

  12. H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, M. Qian, Mater. Sci. Eng. A 636, 103 (2015)

    CAS  Google Scholar 

  13. D. Srivastava, D. Hu, I.T.H. Chang, M.H. Loretto, Intermetallics 7, 1107 (1999)

    CAS  Google Scholar 

  14. A.R.C. Sharman, J.I. Hughes, K. Ridgway, Intermetallics 93, 89 (2018)

    CAS  Google Scholar 

  15. M. Thomas, T. Malot, P. Aubry, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 3143 (2017)

    CAS  Google Scholar 

  16. S.-K. Rittinghaus, A. Weisheit, M. Mathes, W.G. Vargas, in: Proceedings of 13th World Conference Titanium (2016)

  17. M. Doubenskaia, A. Domashenkov, I. Smurov, P. Petrovskiy, Int. J. Mach. Tools Manuf. 129, 1 (2018)

    Google Scholar 

  18. G. Chen, B. Zhang, W. Liu, J. Feng, Intermetallics 19, 1857 (2011)

    CAS  Google Scholar 

  19. M.C. Chaturvedi, Q. Xu, N.L. Richards, J. Mater. Process. Technol. 118, 74 (2001)

    CAS  Google Scholar 

  20. Y. Ma, D. Cuiuri, C. Shen, H. Li, Z. Pan, Addit. Manuf. 8, 71 (2015)

    CAS  Google Scholar 

  21. Q. Xu, M.C. Chaturvedi, N.L. Richards, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 30, 1717 (1999)

    Google Scholar 

  22. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Acta Mater. 142, 82 (2018)

    CAS  Google Scholar 

  23. X. Zhang, H. Chen, L. Xu, J. Xu, X. Ren, X. Chen, Mater. Des. 183, 108105 (2019)

    CAS  Google Scholar 

  24. Y. Chen, F. Lu, K. Zhang, P. Nie, S.R. Elmi Hosseini, K. Feng, Z. Li, J. Alloys Compd. 670, 312 (2016)

    CAS  Google Scholar 

  25. Z. Zhou, L. Huang, Y. Shang, Y. Li, L. Jiang, Q. Lei, Mater. Des. 160, 1238 (2018)

    CAS  Google Scholar 

  26. B. Vrancken, W.E. King, M.J. Matthews, Procedia CIRP 74, 107 (2018)

    Google Scholar 

  27. D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, Z. Shen, Mater. Des. 162, 384 (2019)

    CAS  Google Scholar 

  28. P. Gao, W. Huang, H. Yang, G. Jing, Q. Liu, G. Wang, Z. Wang, X. Zeng, J. Mater. Sci. Technol. 39, 144 (2020)

    Google Scholar 

  29. S. Lee, J. Kim, D.S. Shim, S.H. Park, Y.S. Choi, Met. Mater. Int. 26, 708 (2020)

    CAS  Google Scholar 

  30. G. Baudana, S. Biamino, B. Klöden, A. Kirchner, T. Weißgärber, B. Kieback, M. Pavese, D. Ugues, P. Fino, C. Badini, Intermetallics 73, 43 (2016)

    CAS  Google Scholar 

  31. J. Kim, S. Lee, J.K. Hong, N. Kang, Y.S. Choi, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00599-3

    Article  Google Scholar 

  32. Y.S. Lee, M.M. Kirka, S. Kim, N. Sridharan, A. Okello, R.R. Dehoff, S.S. Babu, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49, 5065 (2018)

    CAS  Google Scholar 

  33. J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15, 299 (1984)

    Google Scholar 

  34. S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, J. Mater. Process. Technol. 178, 135 (2006)

    CAS  Google Scholar 

  35. S.Y. Sung, Y.J. Kim, Intermetallics 15, 4 (2007)

    Google Scholar 

  36. M. Balichakra, S. Bontha, P. Krishna, V.K. Balla, Mater. Res. Express 6, 016543 (2019)

    Google Scholar 

  37. S. Yagi, D. Kunii, AIChE J. 3, 373 (1957)

    CAS  Google Scholar 

  38. M. Balichakra, S. Bontha, P. Krishna, V.K. Balla, Mater. Res. Express 6, 106550 (2019)

    CAS  Google Scholar 

  39. A.B. Phillion, S.L. Cockcroft, P.D. Lee, Mater. Sci. Eng. A 491, 237 (2008)

    Google Scholar 

  40. A.B. Phillion, P.D. Lee, E. Maire, S.L. Cockcroft, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2459 (2008)

    Google Scholar 

  41. A.B. Phillion, R.W. Hamilton, D. Fuloria, A.C.L. Leung, P. Rockett, T. Connolley, P.D. Lee, Acta Mater. 59, 1436 (2011)

    CAS  Google Scholar 

  42. D. Lin, Y. Wang, J. Liu, C.C. Law, Intermetallics 8, 549 (2000)

    CAS  Google Scholar 

  43. V.M. Imayev, R.M. Imayev, G.A. Salishchev, Intermetallics 8, 1 (2000)

    CAS  Google Scholar 

  44. Y. Wang, D. Lin, Y. Zhou, Y. Xia, C.C. Law, J. Mater. Sci. 34, 509 (1999)

    CAS  Google Scholar 

  45. D. Casari, W.U. Mirihanage, K.V. Falch, I.G. Ringdalen, J. Friis, R. Schmid-Fetzer, D. Zhao, Y. Li, W.H. Sillekens, R.H. Mathiesen, Acta Mater. 116, 177 (2016)

    CAS  Google Scholar 

  46. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, S. Xiong, Acta Mater. 161, 35 (2018)

    CAS  Google Scholar 

  47. J.J. Blecher, T.A. Palmer, T. Debroy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45A, 2142 (2014)

    Google Scholar 

  48. H.L. Wei, J.W. Elmer, T. DebRoy, Acta Mater. 126, 413 (2017)

    CAS  Google Scholar 

  49. S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Scr. Mater. 159, 89 (2019)

    CAS  Google Scholar 

  50. S. Kou, Acta Mater. 88, 366 (2015)

    CAS  Google Scholar 

  51. R. Han, S. Lu, W. Dong, D. Li, Y. Li, J. Cryst. Growth 431, 49 (2015)

    CAS  Google Scholar 

  52. B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Acta Mater. 68, 150 (2014)

    CAS  Google Scholar 

  53. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Addit. Manuf. 30, 100835 (2019)

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Industrial Strategic Technology Development Program (10077677) and the Technology Innovation Program (20000201) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20193310100050, Technology development of gas turbine blade reengineering specialized for domestic operating environment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, J., Choe, J. et al. Understanding Crack Formation Mechanisms of Ti–48Al–2Cr–2Nb Single Tracks During Laser Powder Bed Fusion. Met. Mater. Int. 27, 78–91 (2021). https://doi.org/10.1007/s12540-020-00770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00770-1

Keywords

Navigation