Skip to main content
Log in

Behaviour of Sulphide and Non-alumina-Based Oxide Inclusions in Ca-Treated High-Carbon Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Although alumina-based inclusions in Al-killed steel have been widely investigated, few studies focus on non-metallic inclusions in Si-killed steel. Most high-carbon steel, which is expected to have higher potential for the formation of alumina, is deoxidised by silicon to avoid alumina-based inclusions. Many types of high-carbon steel such as free-cutting steel and grinding media for the mining industry include sulphur and calcium; therefore, non-alumina-based oxide and CaS-based inclusions co-exist in molten steel. In this study, the behaviour of sulphide and non-alumina-based oxide inclusions in Ca-treated liquid steel was investigated via transition of the composition and morphology in the liquid state. Using a confocal scanning laser microscope (CSLM), sulphide particles being pulled toward oxide inclusions were directly observed and changes in the composition of inclusions investigated using different analytical techniques. We identified two types of sulphide phase after remelting and cooling, polygonal particles and a ring-shaped layer around the oxide phase. When the sulphide capacity Cs multiplied liquid fraction of oxide had a higher value, the sulphide layer tended to become wider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hong L, Xinhua W, Sasaki Y, Hino M, Mater Trans, 2007, 48(8), 2170-3

    Article  CAS  Google Scholar 

  2. Sasai K, ISIJ Int, 2016, 56(6), 1013-22

    Article  CAS  Google Scholar 

  3. Tozawa H, Kato H, Sorima K, Nakanishi T, ISIJ Int, 1999, 39(5), 426-34

    Article  CAS  Google Scholar 

  4. Monaghan BJ, Chen L, J Non-Cryst Solids, 2004, 347, 254-61

    Article  CAS  Google Scholar 

  5. Itoh H, Hino M, Ban-ya S, Tetsu-to-Hagané, 1998, 84(2), 85-90

    Article  CAS  Google Scholar 

  6. Verma N, Pistorius PC, Fruehan RJ, Potter MS, Oltmann HG, Pretorius EB, Metall Mater Trans B, 2012, 43, 830-40

    Article  Google Scholar 

  7. Harada A, Maruoka N, Shibata H, Kitamura S, ISIJ Int, 2013, 53(12), 2110-7

    Article  CAS  Google Scholar 

  8. Harada A, Maruoka N, Shibata H, Kitamura S, ISIJ Int, 2013, 53(12), 2118-25

    Article  CAS  Google Scholar 

  9. S.J. Kim, A. Harada, S. Kitamura, in: Proceedings of AISTech 2015, May 2015, Cleveland, Ohio, USA.

  10. Kitamura S, Pahlevani F, Tetsu-to-Hagané 2014, 100(4), 500-508

    Article  CAS  Google Scholar 

  11. Kitamura, S.Y., Ito, K., Pahlevani, F., Mori, M, Tetsu-to-Hagané 2014, 100(4), 491-499

    Article  CAS  Google Scholar 

  12. Kitamura S, Miyamura K, Fukuoka I, Tetsu-to-Hagané, 1987, 73(6), 677-83

    Article  CAS  Google Scholar 

  13. Q. Zhang, Y. Min, H. Xu, and C. Liu, ISIJ Int., 2018, p. 105.

  14. Hu Y, Chen W, Wan C, Wang F, Han H, Metallurgical and Materials Transactions B, 2018, 49B, 569-580

    Article  Google Scholar 

  15. Mu W, Dogan N, Coley K, JOM, 2018, 70(7), 1190-1209.

    Article  Google Scholar 

  16. Ren Y, Zhang L, Ling H, Wang Y, Pan D, Ren Q, Wang X, Metallurgical and Materials Transaction B, 2017, 48B, 1433-1438

    Article  Google Scholar 

  17. Duan H, Thomas B, Zhang L, Metallurgical and Materials Transaction B, 2019, 50B, 36-41

    Article  Google Scholar 

  18. M. Sharma, and N. Dogan. In: Nakano J. et al. eds., Advanced real time imaging II, The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06143-2_12

  19. Sharma M, Dogan N, Metallurgical and Materials Transaction B, 2020, 51B, 570-580.

    Article  Google Scholar 

  20. Chen X, Cheng G, Hou Y, Li J, Metals, 2019, 9(2), 257; https://doi.org/10.3390/met9020257

    Article  CAS  Google Scholar 

  21. Li Y, Yang W, Zhang L, Metals, 2020, 10(4), 444; https://doi.org/10.3390/met10040444

    Article  CAS  Google Scholar 

  22. Tanaka, Y., Pahlevani, F., Sahajwalla, V, Metals, 2018, 8 (3), 176. doi: 10.3390/met8030176

    Article  CAS  Google Scholar 

  23. Tanaka, Y., Pahlevani, F., Privat, K., Moon, S., Dippenaar, R., Kitamura, S., Sahajwalla, V, Metallurgical and Materials Transactions B, 2018,. doi: 10.1007/s11663-018-1394-5

    Article  Google Scholar 

  24. Tanaka, Y., Pahlevani, F., Moon, S., Dippenaar, R., Sahajwalla, V, Nature/Scientific Reports 2019, 9:10096, doi: 10.1038/s41598-019-46450-y.

    Article  CAS  Google Scholar 

  25. Itoh H, Hino M, Ban-ya S, Tetsu-to-Hagané, 1997, 83(12), 773-8

    Article  CAS  Google Scholar 

  26. Elliott JF, Gleiser M, Ramakrishna V, Addison-Wesley Publishing Co., Reading, Mass; 1963

    Google Scholar 

  27. Wang Y, Valdez M, Sridhar S, Metall Mater Trans B, 2002, 33, 625-32

    Article  CAS  Google Scholar 

  28. Takenouchi T, Suzuki K, Tetsu-to-Hagané, 1977, 63(10), 1653-62

    Article  CAS  Google Scholar 

  29. Sharma RA, Richardson FD, J Iron Steel Inst, 1962, 200, 373-9

    CAS  Google Scholar 

  30. Sosinsky DJ, Sommerville ID, Metall Mater Trans B, 1986, 17, 331-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported under the Australian Research Council’s Industrial Transformation Research Hub funding scheme (project IH130200025). Y. T. thanks Nippon Steel & Sumitomo Metal Corp., Japan, for financial support for his PhD study in UNSW Sydney. The authors acknowledge the facilities and scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Electron Microscope Unit, The University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Pahlevani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Pahlevani, F., Kitamura, Sy. et al. Behaviour of Sulphide and Non-alumina-Based Oxide Inclusions in Ca-Treated High-Carbon Steel. Metall Mater Trans B 51, 1384–1394 (2020). https://doi.org/10.1007/s11663-020-01872-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01872-2

Navigation