Skip to main content
Log in

Forecast of Adiabatic Shear Band Formation in Two Commercial Ultra-high-Strength Armor Steels by Split Hopkinson Pressure Bar

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Formation possibilities of adiabatic shear bands (ASBs) or cracks in two commercial ultra-high-strength armor steels composed of martensite were evaluated by a split Hopkinson pressure bar so that a plausible forecasting method of ASB formation and cracking during the dynamic compression or ballistic impact might be suggested. The present dynamic compressive test effectively investigated the ASB formation behavior and provided a good idea on how many ASBs or cracks form during the ballistic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [1]A. Marchand, and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  2. [2]B. Mishra, P.K. Jena, B. Ramakrishna, V. Madhu, T.B. Bhat, and N.K. Gupta: Int. J. Impact Eng., 2012, vol. 44, pp. 17–28.

    Article  Google Scholar 

  3. [3]Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50, pp. 575–96.

    Article  CAS  Google Scholar 

  4. [4]S.H. Atapek, and S. Karagoz: Def. Sci. J., 2011, vol. 61, pp. 81–7.

    Article  CAS  Google Scholar 

  5. [5]F. Martinez, L.E. Murr, A. Ramirez, M.I. Lopez, and S.M. Gaytan: Mater. Sci. Eng. A, 2007, vol. 454–55, pp. 581–89.

    Article  Google Scholar 

  6. [6]A.G. Odeshi, S. Al-ameeri, and M.N. Bassim: J. Mater. Process. Technol., 2005, vol. 162–63, pp. 385–91.

    Article  Google Scholar 

  7. [7]P.K. Jena, B. Mishra, K.S. Kumar, and T.B. Bhat: Mater. Des., 2010, vol. 31, pp. 3308–16.

    Article  CAS  Google Scholar 

  8. [8]C. Zheng, F. Wang, X. Cheng, K. Fu, J. Liu, Y. Wang, T. Liu, and Z. Zhu: Mater. Sci. Eng. A, 2014, vol. 608, pp. 53–62.

    Article  CAS  Google Scholar 

  9. [9]L.E. Murr, A.C. Ramirez, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, D.H. Hernandez, and E. Martinez: Mater. Sci. Eng. A, 2009, vol. 516, pp. 205–16.

    Article  Google Scholar 

  10. [10]K. Sun, X. Yu, C Tan, H. Ma, F. Wang, and H. Cai: Mater. Sci. Eng. A, 2014, vol. 595, pp. 247–56.

    Article  CAS  Google Scholar 

  11. [11]M.N. Bassim, and A.G. Odeshi: Arch. Mater. Sic. Eng., 2008, vol. 31, pp. 69–74.

    Google Scholar 

  12. [12]A.G. Odeshi, S. Al-ameeri, S. Mirfakhraei, F. Yazdani, and M.N. Bassim: Theor. Appl. Fract. Mech., 2006, vol. 45, pp. 18–24.

    Article  CAS  Google Scholar 

  13. [13]S.E. Schoenfeld, and T.W. Wright: Int. J. Solids. Struct., 2003, vol. 40, pp. 3021–37.

    Article  Google Scholar 

  14. [14]Y. Guo, and Y. Li: Acta Mech. Solida Sin., 2012, vol. 25, pp. 299–311.

    Article  Google Scholar 

  15. [15]A. Azimi, G.M. Owolabi, H. Fallahdoost, N. Kumar, and G. Warner: Met. Mater. Int., 2019, vol. 25, pp. 900–11.

    Article  CAS  Google Scholar 

  16. C. Tang, K. Wu, W. Liu, D. Feng, G. Zuo, W. Liang, Y. Yang, X. Chen, Q. Li, and X. Liu: Met. Mater. Int., 2019, pp. 1–10.

  17. [17]J. Peirs, P. Verleysen, J. Degrieck, and F. Coghe: Int. J. Impact Eng., 2010, vol. 37, pp. 703–14.

    Article  Google Scholar 

  18. [18]B.B. Singh, G. Sukumar, A. Bhattacharjee, K.S. Kumar, T.B. Bhat, and A.K. Gogia: Mater. Des., 2012, vol. 36, pp. 640–49.

    Article  Google Scholar 

  19. Industeel Brochure, MARS300 perforated MARS 300, Industeel, France, 2015.

  20. SSAB Data Sheet, Armox Advance, Version 2007, Swedish Steel Oxelösund AB, Sweden, 2007.

  21. [21]A.P. Bentley, and G.C. Smith: Metall. Trans. A, 1986, vol. 17, pp. 1593–1600.

    Article  Google Scholar 

  22. [22]A.G. Odeshi, A.A. Tiamiyu, D. Das, N. Katwal, I.N.A. Oguocha, and A.K. Khan: Mater. Sci. Eng. A, 2019, vol. 754, pp. 602–12.

    Article  CAS  Google Scholar 

  23. [23]S. Da-xiang, Z. Xin-ming, Y. Ling-ying, G. Xing-hui, J. Hai-chun, and G. Gang: Mater. Sci. Eng. A, 2015, vol. 640, pp. 165–70.

    Article  Google Scholar 

  24. [24]H. Lee, J.H. Choi, M.C. Jo, I. Jo, S.-K. Lee, and S. Lee: Met. Mater. Int., 2018, vol. 24, pp. 894–903.

    Article  CAS  Google Scholar 

  25. MIL-DTL-46100E (MR), Armor Plate, Steel, Wrought, High-Hardness, 2008.

  26. [26]J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol. 45, pp. 635–49.

    Article  CAS  Google Scholar 

  27. [27]Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Mater. Sci. Eng. A, 2007, vol. 445–46, pp. 275–80.

    Article  Google Scholar 

  28. [28]H. Song, D.G. Kim, D.W. Kim, M.C. Jo, Y.H. Jo, W. Kim, H.S. Kim, B.-J. Lee, and S. Lee: Sci. Rep., 2019, vol. 9, pp. 6163.

    Article  Google Scholar 

  29. [29]M.A. Meyers, and H.-R. Pak: Acta Metall., 1986, vol. 34, pp. 2493–99.

    Article  CAS  Google Scholar 

  30. [30]Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, and J.A. Szpunar: Scr. Mater., 2009, vol. 61, pp. 899–902.

    Article  CAS  Google Scholar 

  31. [31]A.A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar: Materialia, 2018, vol. 4, pp. 81–98.

    Article  Google Scholar 

  32. [32]B. Hwang, S. Lee, Y.C. Kim, N.J. Kim, and D.H. Shin: Mater. Sci. Eng. A, 2006, vol. 441, pp. 308–20.

    Article  Google Scholar 

  33. [33]M.A. Meyers, U.R. Andrade, and A.H. Chokshi: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2881–93.

    Article  CAS  Google Scholar 

  34. [34]L. Tang, Z. Chen, C. Zhan, X. Yang, C. Liu, and H. Cai: Mater. Charact., 2012, vol. 64, pp. 21–6.

    Article  CAS  Google Scholar 

  35. [35]M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, and T.R. McNelley: Acta Mater., 2003, vol. 51, pp. 1307–25.

    Article  CAS  Google Scholar 

  36. [36]A.A. Tiamiyu, A.Y. Badmos, and A.G. Odeshi: Mater. Des., 2016, vol. 89, pp. 872–83.

    Article  CAS  Google Scholar 

  37. [37]T. Kozmel, M. Vural, and S. Tin: J. Mater. Sci., 2016, vol. 51, pp. 7554–70.

    Article  CAS  Google Scholar 

  38. [38]R.L. Woodward: Int. J. Mech. Sci., 1978, vol. 20, pp. 599–607.

    Article  Google Scholar 

  39. [39]T.W. Wright: J. Mech. Phys. Solids, 1990, vol. 38, pp. 515–30.

    Article  Google Scholar 

  40. G. Sukumar, B. BhavSingh, A Bhattacharjee, K. SivaKumar, and A.K. Gogia: Int. J. Impact. Eng., 2013, vol. 54, pp. 149–60.

    Article  Google Scholar 

  41. [41]B.B. Singh, G. Sukumar, P.P. Rao, K.S. Kumar, V. Madhu, and R.A. Kumar: Mater. Sci. Eng. A, 2019, vol. 751, pp. 115–27.

    Article  Google Scholar 

  42. J.-K. Hwang: Met. Mater. Int., 2019, pp. 1–14.

  43. N. Li, Y.D. Wang, R. LinPeng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, and H.N. Cai: Acta Mater., 2011, vol. 59, pp. 6369–77.

    Article  CAS  Google Scholar 

  44. [44]Y. Me-Bar and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.

    Article  Google Scholar 

Download references

This work was supported by Agency for Defense Development (Grant No.; UE161030GD), National Research Foundation of Korea (NRF) Grant (No. 2014M3C1A9060722) and funded by the Ministry of Science, ICT, and Future Planning, Korea, and Brain Korea 21 PLUS Project for Center for Creative Industrial Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M.C., Kim, S., Park, H.K. et al. Forecast of Adiabatic Shear Band Formation in Two Commercial Ultra-high-Strength Armor Steels by Split Hopkinson Pressure Bar. Metall Mater Trans A 51, 3384–3391 (2020). https://doi.org/10.1007/s11661-020-05814-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05814-0

Navigation