Skip to main content
Log in

The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is addressed to study the existence of maximizers for the singular Moser–Trudinger supremum under constraints in the critical case

$$\begin{aligned} MT_{N}(a,\beta ) = \sup _{u\in W^{1,N}({\mathbb {R}}^N),\, \Vert \nabla u\Vert _N^a + \Vert u\Vert _N^N =1} \int _{{\mathbb {R}}^N}\Phi _N\left( (1-\beta /N)\alpha _N |u|^{\frac{N}{N-1}}\right) |x|^{-\beta } dx, \end{aligned}$$

where \(a>0\), \(\beta \in [0,N)\), \(\Phi _N(t) = e^t -\sum _{k=0}^{N-2} \frac{t^k}{k!}\), \(\alpha _N = N \omega _{N-1}^{1/(N-1)}\), and \(\omega _{N-1}\) denotes the surface area of the unit sphere in \({\mathbb {R}}^N\). More precisely, we study the effect of the parameter a to the attainability of \(MT_{N}(a,\beta )\). We will prove that for each \(\beta \in [0,N)\) there exist the thresholds \(a_*(\beta )\) and \(a^*(\beta )\) such that \(MT_{N}(a,\beta )\) is attained for any \(a \in (a_*(\beta ), a^*(\beta ))\) and is not attained for \(a < a_*(\beta )\) or \(a > a^*(\beta )\). We also give some qualitative estimates for \(a_*(\beta )\) and \(a^*(\beta )\). Our results complete the recent studies on the sharp Moser–Trudinger type inequality under constraints due to do Ó, Sani and Tarsi (Commun Contemp Math 19:27, 2016), Lam (Proc Am Math Soc 145:4885–4892, 2017; Math Nachr 291(14–15):2272–2287, 2018) and Ikoma, Ishiwata and Wadade (Math Ann 373(1–2):831–851, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \({{\mathbb{R}}}^N\) and their best constant. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    Article  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)

    Article  MathSciNet  Google Scholar 

  3. Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equatins 29, 295–322 (2004)

    Article  MathSciNet  Google Scholar 

  4. Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equations Appl. 13, 585–603 (2007)

    Article  MathSciNet  Google Scholar 

  5. Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \({{\mathbb{R}}}^N\) and its applications. Int. Math. Res. Not. IMRN 13, 2394–2426 (2010)

    MATH  Google Scholar 

  6. Balogh, J., Manfredi, J., Tyson, J.: Fundamental solution for the \(Q-\)Laplacian and sharp Moser–Trudinger inequality in Carnot groups. J. Funct. Anal. 204, 35–49 (2003)

    Article  MathSciNet  Google Scholar 

  7. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001)

    Article  MathSciNet  Google Scholar 

  10. do Ó, J.M., Sani, F., Tarsi, C.: Vanishing–concentration–compactness alternative for the Trudinger–Moser inequality in \({{\mathbb{R}}}^N\). Commun. Contemp. Math. 19, 27 (2016)

    MATH  Google Scholar 

  11. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in 2 dimensions Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  12. Ikoma, N., Ishiwata, M., Wadade, H.: Existence and non-existence of maximizers for the Moser–Trudinger type inequalities under inhomogeneous constraints. Math. Ann. 373(1–2), 831–851 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser inequalities in \({\mathbb{R}}^N\). Math. Ann. 351, 781–804 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ishiwata, M., Wadade, H.: On the effect of equivalent constraints on a maximizing problem associated with the Sobolev type embeddings in \({{\mathbb{R}}}^N\). Math. Ann. 364, 1048–1068 (2016)

    Article  Google Scholar 

  15. Ishiwata, M., Wadade, H.: On the maximizing problem associated with Sobolev-type embeddings under inhomogeneous constraints. Appl. Anal. 98(10), 1916–1934 (2019)

    Article  MathSciNet  Google Scholar 

  16. Kozono, H., Ogawa, T., Sohr, H.: Asymptotic behaviour in \(L^r\) for weak solutions of the Navier–Stokes equations in exterior domains. Manuscripta Math. 74(3), 253–275 (1992)

    Article  MathSciNet  Google Scholar 

  17. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33(4), 1219–1246 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lam, N.: Maximizers for the singular Trudinger–Moser inequalities in the subcritical cases. Proc. Am. Math. Soc. 145, 4885–4892 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lam, N.: Optimizers for the singular Trudinger–Moser inequalities in the critical case \({{\mathbb{R}}}^2\). Math. Nachr. 291(14–15), 2272–2287 (2018)

    Article  MathSciNet  Google Scholar 

  20. Li, Y.: Moser–Trudinger inequaity on compact Riemannian manifolds of dimension two. J. Partial Differ. Equations 14, 163–192 (2001)

    MATH  Google Scholar 

  21. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({{\mathbb{R}}}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equations 264, 4901–4943 (2018)

    Article  MathSciNet  Google Scholar 

  23. Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1, 45–121 (1985)

    Article  MathSciNet  Google Scholar 

  25. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  26. Nguyen, V.H.: Extremal functions for the sharp Moser–Trudinger type inequalities in whole space \(\mathbb{R}^N\) (2017). arXiv:1705.05864(preprint)

  27. Nguyen, V.H.: Concentration–compactness principle for the sharp Adams inequalities in bounded domains and whole space \({{\mathbb{R}}}^n\). J. Differ. Equations 267(7), 4448–4492 (2019)

  28. Nguyen, V.H.: Extremal functions for the Moser–Trudinger inequality of Adimurthi–Druet type in \(W^{1,N}({\mathbb{R}}^N)\). Commun. Contemp. Math. 21(4), 1850023, 37 pp (2019)

    Article  Google Scholar 

  29. Nguyen, V.H.: Maximizers for the variational problems associated with Sobolev type inequalities under constraints. Math. Ann. 372(1–2), 229–255 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ozawa, T.: On crtical cases of Sobolev’s inequalities. J. Funct. Anal. 127(195), 259–269 (1992)

  31. Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), (Russian). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  32. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({{\mathbb{R}}}^2\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  Google Scholar 

  33. Struwe, M.: Critical points of embeddings of \(H_0^{1,n}\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1988)

    Article  MathSciNet  Google Scholar 

  34. Tintarev, C.: Trudinger–Moser inequality with remainder terms. J. Funct. Anal. 266, 55–66 (2014)

    Article  MathSciNet  Google Scholar 

  35. Trudinger, N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  36. Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)

    Article  MathSciNet  Google Scholar 

  37. Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations, (Russian). Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referee for the useful and constructive comments and suggestions which improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Hoang Nguyen.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V. The thresholds of the existence of maximizers for the critical sharp singular Moser–Trudinger inequality under constraints. Math. Ann. 380, 1933–1958 (2021). https://doi.org/10.1007/s00208-020-02010-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02010-8

Mathematics Subject Classification

Navigation