Skip to main content
Log in

Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider a quantum field model with exponential interactions on the two-dimensional torus, which is called the \(\exp (\Phi )_{2}\)-quantum field model or Høegh-Krohn’s model. In the present paper, we study the stochastic quantization of this model by singular stochastic partial differential equations, which is recently developed. By the method, we construct a unique time-global solution and the invariant probability measure of the corresponding stochastic quantization equation and identify it with an infinite-dimensional diffusion process, which has been constructed by the Dirichlet form approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, F.C. De Vecchi and M. Gubinelli: The elliptic stochastic quantization of some two dimensional Euclidean QFTs, preprint (2019), arXiv:1906.11187.

  2. S. Albeverio and R. Høegh-Krohn: The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time, J. Funct. Anal. 16 (1974), pp. 39–82.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Albeverio, R. Høegh-Krohn and D. Testard: Irreducibility and reducibility for the energy representation of the group of mappings of a Riemannian manifold into a compact semisimple Lie group, J. Funct. Anal. 41 (1981), pp. 378–396.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Albeverio, H. Kawabi, S.-R. Mihalache and M. Röckner: Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus, preprint (2020). arXiv: 2004.12383.

  5. S. Albeverio, H. Kawabi and M. Röckner: Strong uniqueness for both Dirichlet operators and stochastic dynamics to Gibbs measures on a path space with exponential interactions, J. Funct. Anal. 262 (2012), pp. 602–638.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Albeverio and S. Kusuoka: The invariant measure and the flow associated to the \(\Phi ^4_3\)-quantum field model, To appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci., Serie V, 56 pages. (DOI Number: https://doi.org/10.2422/2036-2145.201809_008)

  7. S. Albeverio, Z.-M. Ma and M. Röckner: Quasi regular Dirichlet forms and the stochastic quantization problem, in Festschrift Masatoshi Fukushima, Interdiscip. Math. Sci., 17, World Sci. Publ., Hackensack, NJ, 2015, pp. 27–58.

  8. S. Albeverio and M. Röckner: Classical Dirichlet forms on topological vector spaces—closability and a Cameron-Martin formula, J. Funct. Anal. 88 (1990), pp. 395–436.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Albeverio and M. Röckner: Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms, Probab. Theory Relat. Fields 89 (1991) pp. 347–386.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Albeverio, M. Röckner and T.S. Zhang: Girsanov transform for symmetric diffusions with infinite dimensional state space, Ann. Probab. 21 (1993), pp. 961–978.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Albeverio and M.W. Yoshida: \(H\)-\(C^{1}\) maps and elliptic SPDEs with polynomial and exponential perturbations of Nelson’s Euclidean free field, J. Funct. Anal. 196 (2002), pp. 265–322.

    MathSciNet  MATH  Google Scholar 

  12. H. Bahouri, J.-Y. Chemin, and R. Danchin: Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

  13. V.S. Borkar, R.T. Chari and S.K. Mitter: Stochastic quantization of field theory in finite and infinite volumes, J. Funct. Anal. 81 (1988), pp. 184–206.

    Article  MathSciNet  MATH  Google Scholar 

  14. D.C. Brydges, J. Fröhlich, and A.D. Sokal: A new proof of the existence and nontriviality of the continuum \(\phi ^{4}_{2}\) and \(\phi ^{4}_{3}\) quantum field theories, Comm. Math. Phys. 91 (1983), pp.141–186.

    MathSciNet  Google Scholar 

  15. R. Catellier and K. Chouk: Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab. 46 (2018), pp. 2621–2679.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Chandra, M. Hairer and H. Shen: The dynamical sine-Gordon model in the full subcritical regime, preprint (2018), arXiv:1808.02594.

  17. Z.-Q. Chen and M. Fukushima: Symmetric Markov Processes, Time change, and Boundary Theory, London Mathematical Society Monographs Series, volume 35. Princeton University Press, Princeton, NJ, 2012.

    Google Scholar 

  18. G. Da Prato and A. Debussche: Strong solutions to the stochastic quantization equations, Ann. Probab. 31 (2003), pp. 1900–1916.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, UK, 1992.

    Book  MATH  Google Scholar 

  20. G. Da Prato and J. Zabczyk: Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, volume 229. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  21. J. Dubédat and H. Shen: Stochastic Ricci flow on compact surfaces, preprint (2019), arXiv:1904.10909.

  22. B. Duplantier and S. Sheffield: Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), pp. 333–393.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Echeverría: A criterion for invariant measures of Markov processes, Z. Wahrsag. Verw. Gebiete 61 (1982), pp. 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Fröhlich: Classical and quantum statistical mechanics in one and two dimensions: two-component Yukawa- and Coulomb systems, Comm. Math. Phys. 47 (1976), pp. 233–268.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Fröhlich and Y.M. Park: Remarks on exponential interactions and the quantum sine-Gordon equation in two space-time dimensions, Helv. Phys. Acta 50 (1977), pp. 315–329.

    MathSciNet  Google Scholar 

  26. C. Garban: Dynamical Liouville, J. Funct. Anal. 278 (2020), 108351, 54 pages.

  27. D. Gatarek and B. Goldys: Existence, uniqueness and ergodicity for the stochastic quantization equation, Studia Math. 119 (1996), pp. 179–193.

    MathSciNet  MATH  Google Scholar 

  28. J. Glimm and A. Jaffe: Quantum Physics: A Functional Integral Point of View, Springer, Berlin, 1986.

    MATH  Google Scholar 

  29. M. Gubinelli and M. Hofmanová: Global solutions to elliptic and parabolic \(\Phi ^4\) models in Euclidean space, Comm. Math. Phys. 368 (2019), pp. 1201–1266.

    MathSciNet  MATH  Google Scholar 

  30. M. Gubinelli, P. Imkeller and N. Perkowski: Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75 pages.

  31. M. Hairer: A theory of regularity structures, Invent. Math. 198 (2014), pp. 269–504.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Hairer and H. Shen: The dynamical Sine-Gordon model, Comm. Math. Phys. 341 (2016), pp. 933–989.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Høegh-Krohn: A general class of quantum fields without cut-offs in two space-time dimensions, Comm. Math. Phys. 21 (1971), pp. 244–255.

    Article  MathSciNet  Google Scholar 

  34. Y. Hu and G. Kallianpur: Exponential integrability and application to stochastic quantization, Appl. Math. Optim. 37 (1993), pp. 295–353.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Jona-Lasinio and P.K. Mitter: On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), pp. 409–436.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-P. Kahane: Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (1985), pp. 105–150.

    MathSciNet  MATH  Google Scholar 

  37. Shigeo Kusuoka: Høegh-Krohn’s model of quantum fields and the absolute continuity of measures, in “Ideas and methods in quantum and statistical physics (Oslo, 1988)”, pp. 405–424, Cambridge Univ. Press, Cambridge, 1992.

  38. E.H. Lieb and M. Loss: Analysis, Graduate Studies in Mathematics, volume 14. American Mathematical Society, Providence, RI, 2nd edition, 2001.

    Google Scholar 

  39. Z.-M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

    Book  MATH  Google Scholar 

  40. S. Mihalache: Stochastische Quantisierung bei exponentieller Wechselwirkung, Diploma Thesis, 52 pages, Universität Bonn, 2006.

  41. R. Mikulevicius and B.L. Rozovskii: Martingale problems for stochastic PDE’s, in: R. Carmona and B.L. Rozovskii (Eds.), Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 243–325.

    Chapter  Google Scholar 

  42. J.-C. Mourrat and H. Weber: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane, Ann. Probab. 45 (2017), pp. 2398–2476.

    MathSciNet  MATH  Google Scholar 

  43. J.-C. Mourrat and H. Weber: The dynamical \(\Phi ^4_{3}\) comes down from infinity, Comm. Math. Phys. 356 (2017), pp. 673–753.

    MathSciNet  MATH  Google Scholar 

  44. M. Ondreját: Uniqueness for stochastic evolution equations in Banach spaces, Dissertaiones Math. (Rozprawy Mat.) 426 (2004), 63 pages.

  45. G. Parisi and Y.S. Wu: Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), pp. 483–496.

    MathSciNet  Google Scholar 

  46. R. Rhodes and V. Vargas: Gaussian multiplicative chaos and applications: A review, Probab. Surv. 11 (2014), pp. 315–392.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Röckner, R. Zhu and X. Zhu: Restricted Markov uniqueness for the stochastic quantization of \(P(\Phi )_{2}\) and its applications, J. Funct. Anal. 272 (2017), pp. 4263–4303.

    MathSciNet  MATH  Google Scholar 

  48. B. Simon: The \(P(\phi )_{2}\) Euclidean (Quantum) Field Theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974.

  49. J. Simon: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65–96.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous referees for helpful suggestions that improved the quality of the present paper. This work was partially supported by JSPS KAKENHI Grant Numbers 17K05300, 17K14204 and 19K14556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Kusuoka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Besov space

Let \((\chi ,\rho )\) be a dyadic partition of unity, i.e., they are smooth radial functions on \({\mathbb {R}}^2\) such that,

  • \(0\le \chi \le 1\), \(0\le \rho \le 1\),

  • \(\chi \) is supported in \(\{x;|x|\le \frac{4}{3}\}\), \(\rho \) is supported in \(\{x;\frac{3}{4}\le |x|\le \frac{8}{3}\}\),

  • \(\chi (\xi )+\sum _{j=0}^\infty \rho (2^{-j}\xi )=1\) for any \(\xi \in {\mathbb {R}}^2\).

Denote \(\rho _{-1}=\chi \) and \(\rho _j=\rho (2^{-j}\cdot )\) for \(j\ge 0\). Define

$$\begin{aligned} \Delta _jf=\sum _{k\in {\mathbb {Z}}^2}\rho _j(k)\langle f, \mathbf{e }_k\rangle \mathbf{e }_k. \end{aligned}$$

For \(s\in {\mathbb {R}}\) and \(p,q\in [1,\infty ]\), we define the inhomogeneous Besov norm

$$\begin{aligned} \Vert f\Vert _{B_{p,q}^s}:=\left\| \{2^{js}\Vert \Delta _jf \Vert _{L^p(\Lambda )}\}_{j\ge -1}\right\| _{\ell ^q}. \end{aligned}$$

Proposition A.1

([12, Page 99]). For any \(s\in {\mathbb {R}}\), \(H^s=B_{2,2}^s\).

1.2 Schauder estimates

Proposition A.2

([42, Propositions 5 and 6]). Let \(s\in {\mathbb {R}}\), \(p,q\in [1,\infty ]\) and \(\mu >0\).

  1. (i)

    For every \(\delta \ge 0\), \(\Vert e^{\frac{1}{2}(\triangle -1)t}u\Vert _{B_{p,q}^{s+2\delta }}\lesssim t^{-\delta }\Vert u\Vert _{B_{p,q}^s}\) uniformly over \(t>0\).

  2. (ii)

    For every \(\delta \in [0,1]\), \(\Vert (e^{\frac{1}{2}(\triangle -1)t}-1)u\Vert _{B_{p,q}^{s-2\delta }}\lesssim t^\delta \Vert u\Vert _{B_{p,q}^s}\) uniformly over \(t>0\).

Proposition A.3

Let u solve the equation (in the mild form)

$$\begin{aligned} \left\{ \begin{aligned} \partial _tu(t,x)&=\frac{1}{2}(\triangle -1)u(t,x)+U(t,x),\quad t>0,\quad x\in \Lambda ,\\ u(0,\cdot )&=u_0,\quad x\in \Lambda . \end{aligned} \right. \end{aligned}$$

Let \(r\in (1,\infty ]\) and define \(r'\in [1,\infty )\) by \(1/r+1/r'=1\). Then, for any \(p,q\in [1,\infty ]\), \(\theta \in {\mathbb {R}}\), \(\varepsilon >0\), and \(\eta \in (0,2/r')\), one has

$$\begin{aligned}&\Vert u\Vert _{L^r([0,T];B_{p,q}^{\theta +2-\varepsilon })\cap C([0,T];B_{p,q}^{\theta +2/r'-\varepsilon })\cap C^{\eta /2}([0,T];B_{p,q}^{\theta +2/r'-\varepsilon -\eta })}\\&\quad \lesssim \Vert u_0\Vert _{B_{p,q}^{\theta +2-\varepsilon }}+ \Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })}. \end{aligned}$$

In particular, for \(\beta \in (0,1)\) and \(\delta \in (0,1-\beta )\), setting \(r=p=q=2\), \(\theta = -\,\beta \), \(\varepsilon = 1-\beta -\delta \) and \(\eta = \delta \), one has

$$\begin{aligned} \Vert u\Vert _{L^2([0,T];H^{1+\delta })\cap C([0,T];H^{\delta })\cap C^{\delta /2}([0,T];L^2)} \lesssim \Vert u_0\Vert _{H^{1+\delta }}+\Vert U\Vert _{L^2([0,T];H^{-\beta })}. \end{aligned}$$

Proof

We decompose

$$\begin{aligned}&u_t=e^{\frac{1}{2}t(\triangle -1)}u_0+\int _0^te^{\frac{1}{2}(t-s)(\triangle -1)}U_s\mathrm{d}s =:u_t^0+u_t^1,\\&u_t-u_s=(e^{\frac{1}{2}(t-s)(\triangle -1)}-1)u_s+\int _s^te^{\frac{1}{2}(t-v)(\triangle -1)}U_v\mathrm{d}v =:u_{ts}^0+u_{ts}^1. \end{aligned}$$

(1) Bound in \(L^r([0,T];B_{p,q}^{\theta +2-\varepsilon })\). By Proposition A.2-(i),

$$\begin{aligned} \Vert u_t^0\Vert _{B_{p,q}^{\theta +2-\varepsilon }} \lesssim \Vert u_0\Vert _{B_{p,q}^{\theta +2-\varepsilon }},\quad \Vert u_t^1\Vert _{B_{p,q}^{\theta +2-\varepsilon }} \lesssim \int _0^t(t-s)^{-\frac{2-\varepsilon }{2}}\Vert U_s\Vert _{B_{p,q}^{\theta }}\mathrm{d}s. \end{aligned}$$

By Young’s inequality,

$$\begin{aligned} \Vert u^1\Vert _{L^r([0,T];B_{p,q}^{\theta +2-\varepsilon })} \lesssim \Vert t\mapsto t^{-\frac{2-\varepsilon }{2}}\Vert _{L^1([0,T])} \Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })} \lesssim \Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })}. \end{aligned}$$

(2) Bound in \(L^\infty ([0,T];B_{p,q}^{\theta +2/r'-\varepsilon })\). By Proposition A.2-(i),

$$\begin{aligned} \Vert u_t^1\Vert _{B_{p,q}^{\theta +2/r'-\varepsilon }} \lesssim \int _0^t (t-s)^{-\left( \frac{1}{r'}-\frac{\varepsilon }{2}\right) }\Vert U_s\Vert _{B_{p,q}^{\theta }}\mathrm{d}s. \end{aligned}$$

By Young’s inequality,

$$\begin{aligned} \Vert u^1\Vert _{L^\infty ([0,T];H^{\theta +2-2/r-\varepsilon })}&\lesssim \Vert t\mapsto t^{-\left( \frac{1}{r'}-\frac{\varepsilon }{2}\right) }\Vert _{L^{r'}([0,T])} \Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })} \\&\lesssim \Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })}. \end{aligned}$$

(3) Bound in \(C^{\eta /2}([0,T];B_{p,q}^{\theta +2/r'-\varepsilon -\eta })\). By Proposition A.2-(ii) and the bound in \(L^\infty ([0,T];B_{p,q}^{\theta +2/r'-\varepsilon })\),

$$\begin{aligned} \Vert u_{ts}^0\Vert _{B_{p,q}^{\theta +2/r'-\varepsilon -\eta }} \lesssim (t-s)^{\eta /2}\Vert u_s\Vert _{B_{p,q}^{\theta +2/r'-\varepsilon }} \lesssim (t-s)^{\eta /2}\Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })}, \end{aligned}$$

and by Proposition A.2-(i),

$$\begin{aligned} \Vert u_{ts}^1\Vert _{B_{p,q}^{\theta +2/r'-\varepsilon -\eta }}&\lesssim \int _s^t (t-v)^{-\left( \frac{1}{r'}-\frac{\varepsilon }{2}-\frac{\eta }{2}\right) }\Vert U_v\Vert _{B_{p,q}^{\theta }}\mathrm{d}v\\&\lesssim \left( \int _s^t(t-v)^{-1+(\varepsilon +\eta )\frac{r'}{2}} \mathrm{d}v\right) ^{\frac{1}{r'}}\left( \int _s^t\Vert U_v\Vert _{B_{p,q}^{\theta }}^r\mathrm{d}v\right) ^{\frac{1}{r}}\\&\lesssim (t-s)^{(\varepsilon +\eta )/2}\Vert U\Vert _{L^r([0,T];B_{p,q}^{\theta })}. \end{aligned}$$

Then \(u\in C^{\eta /2}([0,T];B_{p,q}^{\theta +2/r'-\varepsilon -\eta })\) implies \(u\in C([0,T];B_{p,q}^{\theta +2/r'-\varepsilon -\eta })\). Since \(\eta ,\varepsilon >0\) are arbitrary small, one has \(u\in C([0,T];B_{p,q}^{\theta +2/r'-\varepsilon })\) for any \(\varepsilon >0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, M., Kawabi, H. & Kusuoka, S. Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus. J. Evol. Equ. 21, 339–375 (2021). https://doi.org/10.1007/s00028-020-00583-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00583-0

Navigation